Контакты

Производство промышленных роботов в россии. Промышленные роботы в современном производстве

В связи с этим особую популярность завоевывают решения по автоматизации производства на базе промышленных роботов, позволяющих обеспечить полный цикл обработки с высокой производительностью и точностью, избежать перерывов и производственных ошибок, свойственных человеку.

История промышленных роботов

История рынка промышленной робототехники насчитывает уже более 50 лет. Первый патент на робота был получен в 1961 году (подан в 1954) изобретателем Джорджем Деволом (George Devol), который основал в 1956 году вместе с инженером Джозефом Энгельбергом (Joseph F. Engelberger) компанию по первому серийному производству роботов Unimation Inc (от Universal Automatic – универсальная автоматизация). Энгельберг привлекал в компанию дополнительное финансирование, распространял идеи роботизации среди потенциальных заказчиков и популяризировал идею промышленной автоматизации. Несмотря на то, что патент был закреплен за Деволом, именно Энгельберга принято считать «отцом робототехники».


Возможностями автоматизации в первую очередь воспользовались автомобилестроители, и уже в 1961 году начались поставки роботов Unimate на завод General Motors, Нью Джерси. Роботы Unimate были сконструированы с использованием гидроусилителей и программировались в обобщенных координатах, воспроизводя последовательность действий, записанных на магнитный барабан.

Позднее компания Unimation передала свою технологию в Kawasaki Heavy Industries и Guest­Nettlefolds, таким образом открыв производство роботов Unimate в Японии и Англии.

Основное развитие промышленных роботов началось в конце 60­х – начале 70­х годов, когда в 1969 году в Стенфордском университете студент факультета машиностроения Виктор Шейнман (Victor Scheinman) разработал прототип современного робота, отдаленно воспроизводящего возможности человеческой руки, ­ Stanford arm с шестью степенями свободы, электрическими приводами и компьютерным управлением.

В 1969 году появляются разработки в области робототехники компании Nachi. В 1973 году немецкая компания KUKA Robotics демонстрирует своего первого робота Famulus, и почти одновременно швейцарская компания ABB Robotics выводит на рынок робота ASEA. Оба робота имеют по шесть управляемых осей с электромеханическим приводом.

В 1974 году промышленные роботы разрабатываются и устанавливаются на собственное производство в компании Fanuc, а в 1977 году первый робот Yaskawa появляется у компании Motoman.

Дальнейший рост промышленной робототехники был обусловлен развитием компьютера, электроники и масштабным расширением компаний на рынке автомобилестроения – основных заказчиков роботов. General Motors в 80­х годах потратила более 40 миллиардов долларов на разработки в области автоматизации. Основным рынком роботов считается внутренний рынок Японии, на котором находится большинство компаний по их производству: Fuji, Denso, Epson, Fanuc, Intelligent Actuator, Kawasaki, Nachi, Yaskawa (Motoman), Nidec, Kawada. В 1995 году из 700 000 роботов, используемых в мире, 500 000 работали в Японии.

В Советском Союзе крупнейшим интегратором робототехники стала компания «Автоваз». Развивая мощности по выпуску автомобилей и перенимая опыт мировых автомобилестроительных предприятий, в 1984 г. она приобрела лицензию фирмы KUKA. На базе отдельного станкостроительного подразделения концерна «Автоваз» началось производство отечественных роботов, применяемых на поточных линиях предприятия. На сегодняшний день ОАО «Автоваз» совместно с МГТУ «Станкин» реализуют программу выпуска линейки роботов для промышленных производств ­ до 1000 единиц ежегодно.

Преимущества использования промышленных роботов в производстве

Современный промышленный робот­манипулятор в большинстве случаев применяется для замены ручного труда. Так, робот может использовать инструментальный захват для фиксации инструмента и осуществления обработки детали либо держать саму заготовку для того, чтобы подавать ее в рабочую зону на дальнейшую обработку.

Робот имеет ряд ограничений, таких как зона досягаемости, грузоподъемность, необходимость избежать столкновения с препятствием, необходимость предварительного программирования каждого движения. Но при его правильном применении и предварительном анализе работы системы робот способен обеспечить производство рядом преимуществ, повысить качество и эффективность рабочего процесса.

Для оценки актуальности внедрения робота в процесс обработки приведем ряд преимуществ и недостатков применения робототехники на предприятии:

1. Производительность

При применении робота производительность обычно повышается. Прежде всего, это связано с более быстрым перемещением и позиционированием в процессе обработки, также играет роль и такой фактор, как возможность автоматической работы 24 часа в сутки без перерывов и простоев. В случае правильно выбранного применения роботизированной системы производительность по сравнению с ручным производством возрастает в разы или даже на порядок.

Следует отметить, что при широкой номенклатуре изделий, постоянных переналадках, необходимости большого количества периферийного оборудования для разных деталей производительность может и снижаться, делая процесс неэффективным и сложным.

2. Улучшение экономических показателей

Заменяя человека, робот эффективно снижает затраты на оплату специалистов. Особенно данный фактор важен в экономически развитых странах с высокими заработными платами рабочих и необходимостью больших надбавок за переработку, ночное время и т.д. В случае применения робота или автоматизированной системы, в цехе необходимо лишь наличие оператора, контролирующего процесс, при этом оператор может контролировать сразу несколько систем.

При первоначальной закупке роботизированная ячейка – достаточно серьезное финансовое вложение, и предприятие заинтересовано в его быстрой окупаемости. Неправильное применение оборудования и ошибки в его комплектации и расстановке могут привести к увеличению времени обработки либо трудоемкости работы, тем самым снизить экономичность производства.

3. Качество обработки

Часто причиной внедрения технологической системы на базе промышленного робота становится необходимость обеспечения заданного в документации на изделие качества обработки.

Высокая точность позиционирования промышленных роботов (0.1 ­ 0.05 мм) и повторяемость обеспечивают надлежащее качество изделия и устраняют возможность производственного брака. Исключение человеческого фактора приводит к минимизации рабочих ошибок и сохранению постоянной повторяемости на всей производственной программе.

4. Безопасность

Применение робота достаточно эффективно на вредном производстве, оказывающем неблагоприятное воздействие на человека, например, в литейной промышленности, при зачистке сварных швов, окрасочных работах, сварочных процессах и т.д. В случаях, когда применение ручного труда ограничивается законодательством, внедрение робота может являться единственным решением.

При работе в цехе периметр рабочей зоны ограждается различными устройствами для предотвращения проникновения человека в зону действия робота. Наличие защитных систем является главным и неотъемлемым условием безопасной работы роботизированных систем по всему миру.

5. Минимизация рабочего пространства

Правильно скомплектованная ячейка на базе промышленного робота более компактна, чем рабочая зона для выполнения ручных работ. Это достигается более эргономичной конструкцией сборочных кондукторов, небольшим размером места, занимаемого роботом, возможностью его размещения в подвешенном состоянии и т.д.

6. Минимальное обслуживание

Современные промышленные роботы, благодаря применению асинхронных двигателей и качественных редукторов, практически не нуждаются в обслуживании. Изготавливаются специальные модели роботов из нержавеющей стали, например, для работы в медицинской и пищевой промышленности, при высоких и низких температурах и в агрессивных средах. Это делает их менее восприимчивыми к окружающей среде и повышает износостойкость оборудования.

Применение роботов в отдельных производственных процессах

Сварка

Сварка считается наиболее типичным процессом для внедрения роботов. Исторически роботизированная сварка начала широко применяться в автомобилестроении, и в настоящее время практически все автомобильные производства в мире оснащены конвейерами, которые могут состоять из нескольких сотен роботизированных комплексов.


По данным исследований, около 20% всех промышленных роботов используются в сварочных процессах (в США около половины). Вторым по значимости применением считается укладка грузов на поддоны, применяемая на предприятиях с высоким объемом продукции, в особенности в пищевых производствах.

Аргонно­дуговая (TIG, MIG, MAG) или точечная сварка (RWS) с использованием робота обеспечивает более высокое качество изделий по сравнению с принятым сварочным процессом ручной или полуавтоматической сварки. Возможности периферийного оборудования позволяют обеспечивать полный контроль процесса, например, реализовать функцию бесконтактного слежения за сварным швом.

В настоящее время активно развивается применение роботизированной лазерной сварки (LBW), позволяющей лазеру сфокусироваться на точке с варьированием от 0,2 мм, с минимизированием теплового воздействия на изделие и высокой точностью и качеством сварки. Возможность выдержать сверхвысокие длины фокусировки (до 2 метров) и тем самым обеспечить дистанционную сварку существенно расширяет границы применимости сварочного процесса и увеличивает производительность изготовления изделия. Лазерная сварка активно применяется в авиастроении, автомобилестроении, приборостроении, медицине и т.д.

Переход на автоматическую сварку с использованием роботов минимизирует время цикла в несколько раз. Это достигается эргономичной конструкцией или модернизацией сварочной оснастки для обеспечения быстрого цикла сбора изделия, высокими скоростями перемещения робота и организацией поточного производства с обеспечением единовременной сборки­сварки изделий. Необходимо отметить тот факт, что роботизированные системы являются единственной возможностью совмещения обрабатывающих операций, к примеру, обеспечения плазменного или лазерного раскроя, и последующей сварки с помощью смены горелки или режимов сварки без переустанова детали.

Также роботизация сварочного процесса позволяет интегрировать программы сварки в применяемые на предприятии CAD/CAM системы для обеспечения процесса цифрового производства.

Автоматизация загрузки и выгрузки изделий – процесс, имеющий значение на любом современном производстве с высокой производительностью или большим весом и габаритами изделий. Так, роботы применяются для загрузки заготовок в металлообрабатывающие станки, выгрузки готовых изделий и укладки на соответствующие паллеты. Причем достаточно часто один робот обслуживает сразу нескольких машин и работает с разными изделиями, что удешевляет инвестиции в подобную автоматизацию и расширяет функционал внедряемого робота.






В Европе прослеживается тенденция к максимальному увеличению производительности за счет безостановочной круглосуточной работы, внедряется философия безлюдного производства, связанная со стремлением минимизировать расходы на персонал.

В СССР задачи сокращать ручной труд не ставили, робототехника применялась для автоматизации технологических машин, где могут существовать ограничения на труд человека, – штампов, прессов, гальванических ванн, нагревательных печей и т.д. Кроме того, человек может быть ограничен весом изделий. Так, для деталей от 20­30 килограмм требуется применение дополнительного грузоподъемного оборудования.

Внедрение автоматизации в литейных и кузнечно­прессовых цехах обусловливается необходимостью устранения тяжелых условий для рабочих и повышения качества производства: выгрузка тяжелых поковок, литейных заготовок, последующее охлаждение, загрузка в штампы для пресса и т.д. Не случайно, третье место применения роботов после загрузки­выгрузки занимает именно совмещение с кузнечно­прессовым и литейным оборудованием. Практически все процессы литья под давлением в Европе сопровождаются автоматизацией с использованием роботов.

Применение технологических систем на базе роботов может стать альтернативой использованию обычного специализированного на каком­либо технологическом процессе оборудования.

В среднем, цена внедрения робота с установкой и необходимым пакетом для взаимодействия с оборудованием обойдется предприятию в 5 млн. рублей, представляя собой действительно гибкое решение, которое может в будущем использоваться и для иных задач или реализовывать вспомогательные операции, к примеру, сортировку различных изделий, удаление заусенцев, сборочные операции и т.д.

Металлообрабатывающие процессы с использованием роботов

Помимо сварочных и вспомогательных операций роботы могут применяться в самих процессах обработки, выступая альтернативой обрабатывающему оборудованию.





Раскрой материала

Промышленные роботы активно используются для операций раскроя металла с помощью плазмы, лазера и гидроабразивной резки. В отличие от традиционной установки плазменного раскроя плазменные горелки с применением робота могут осуществлять трехмерную резку, что актуально для обработки металлоконструкций, металлопроката (тавров, двутавров, уголков и т.д.), а также подготовки поверхностей под углом для дальнейшей сварки, вырезки различных отверстий и т.д.

Раскрой металла с помощью лазерной резки выступает альтернативой для трехмерного лазерного комплекса, позволяя выполнить любой раскрой в трехмерном пространстве. Данная технология широко используется в автомобилестроении, а также достаточно эффективна для обрезки краев изделий после штамповочных и формовочных операций. Роботизированная ячейка для лазерной резки может использоваться и для лазерной сварки, а также в дальнейшем совмещать двух роботов, использующих один источник.

Гидро­ или гидроабразивная резка роботом расширяет возможности раскроя до обработки любых трехмерных деталей, повышает производительность. Гидроабразивная резка отличается отсутствием теплового воздействия и возможностью обработки практически любых материалов. Так, гидроабразивная резка роботом используется для вырезки всех отверстий в стали толщиной 3 мм по корпусу автомобиля Renault Espace на заводе во Франции (Romorantin, France). Полный цикл вырезки отверстий занимает 2 минуты 30 секунд.

Гибка труб

Гибка труб роботом используется в ограниченном виде, представляя собой бездорновую гибку с помощью позиционирования заготовки роботом и использования сопутствующей гибочной головки. Преимуществом такой обработки является высокая скорость изготовления, возможность обработки изделий с уже существующими присоединительными элементами и одновременное совмещение с загрузкой­выгрузкой изделий тем же роботом. Такие системы используются в автомобилестроении, изготовлении металлической мебели и других товаров народного потребления, где применяется бездорновая гибка.

Фрезерование, сверление, удаление заусенцев и сварных швов

Использование роботов для фрезерования, сверления и обработки кромок металлов, пластмасс, древесины и камня – новая, динамично развивающаяся технология. Она стала возможна прежде всего благодаря увеличению жесткости и точности современных манипуляторов. Основные преимущества заключаются в практически неограниченной рабочей зоне робота (систему можно оборудовать линейной осью в несколько десятков метров), высокой скорости обработки и большом количестве управляемых осей. Например, типичная фрезеровальная ячейка на базе промышленного робота имеет 8 – 10 управляемых осей и позволяет получить максимальную гибкость обработки.



Возможно использование самого разного приводного инструмента, пневматического и электрического, с воздушным и жидкостным охлаждением. Для снятия заусенцев с кромок деталей после фрезерования используются пневматический приводной инструмент с частотой вращения 35 000 об/мин, а для фрезерования металлов – электрический шпиндель с водяным охлаждением, мощностью 24 кВт.

Отдельно стоит упомянуть такой тяжелый, трудоемкий процесс для человека, как зачистка сварного шва на изделии. Применение автоматизации позволяет снизить воздействие вредных производственных факторов и существенно уменьшить время на выполнение зачистки.

Полирование и шлифование

Шлифование металлических деталей – сложный и грязный процесс, крайне вредный для человека. В то же время его автоматизация довольно проста и не представляет проблемы для современных промышленных манипуляторов. Робот всегда сможет повторить траекторию движения шлифовальщика, обеспечив при этом неизменную повторяемость и отличное качество обработки.

Процессы абразивной обработки поверхности можно разделить на два основных класса – шлифование и полирование. При шлифовании используют абразивные круги или ленты, съем материала может быть существенным, образуется много пыли. Полирование – более тонкий процесс, для которого применяются войлочные круги с абразивной пастой, съема материала при этом практически не происходит. Как правило, эти процессы комбинируют. Преимущество робота заключается в том, что он может обрабатывать деталь на нескольких абразивных инструментах поочередно, за один установ. Например, сначала снимается поверхностный слой на абразивной ленте, а потом деталь заполировывается на войлочном круге с автоматической подачей пасты.

Перспективы применения роботов

Достоинство робототехники – гибкость применения и возможность использования в практически неограниченном количестве процессов. Так, например, в авиастроительной отрасли в целях повышения качества при снижении ручного труда роботы начинают применяться в процессах клепки, обшивки фюзеляжа, выкладки композитных материалов, при различных работах в условиях ограниченного пространства. Активно распространяется применение роботов в измерительных системах. В США и Европе роботы используются в камерах очистки изделий под высоким давлением.

В России применение роботов пока ограничено. Так, в докризисный 2007 год было внедрено до 200 роботизированных систем с общей численностью около 8000 промышленных роботов по стране. Для примера, за тот же год в США было внедрено около 34 тыс., Европе – 43 тыс., Японии – 59 тыс. роботизированных систем. Причинами отставания являются недостаточная информированность российских технических специалистов и менеджмента предприятий, желание избежать больших затрат на их внедрение, низкая стоимость ручного труда.

Вместе с тем, в отличие от стационарного ЧПУ оборудования, робот ­ более широкофункциональная система, ориентированная на повышение качества и производительности производства и минимизацию ручного труда, приводящих в конечном итоге к положительному экономическому эффекту и повышению конкурентоспособности предприятия. А потому все больше российских интеграторов готовы решать задачи прикладного внедрения роботов в технологические процессы. Мы надеемся, что в течение ближайших лет концепция «безлюдного производства» в России будет интенсивно набирать обороты.

Игорь Проценко, Борис Иванов

ООО «Нью Лайн Инжиниринг»

(ООО "Битроботикс"), Россия

Производитель манипулятора типа "дельта робот". Компания также использует его в своих проектах автоматизации. На ноябрь 2017 года - единственный в России разработчик и производитель роботов такого класса и производительности. Есть внедренные решения автоматизации с данным манипулятором и системой технического зрения.

ВМЗ (ООО "ВМЗ", Волжский Машиностроительный завод), Россия

Разработчик и производитель промышленных роботов. Предприятие действовало с 2011 года. На 2016 год - в стадии ликвидации данного направления. Закрытие на ВАЗ связывают с отсутствием заказов на роботов.

НПО НИИИП-НЗиК (Коминтерн), Россия, Новосибирск

планы создания промышленных роботов для оснащения литьевых машин. На 2018 год своего производства нет.

Рекорд Инжиниринг (ООО "Рекорд-Инжиниринг), Россия, Екатеринбург

Проектирование и производство промышленных роботов-манипуляторов, производство аналогов импортных промышленных роботов манипуляторов. Есть продажи.
http://www.rekord-eng.com/avtomatizaciya/promyshlennye_roboty/

, Россия, Казань

Разработчик и производитель 3-7 осевых промышленных роботов ARKODIM консольного типа, линейной архитектуры. В 2016 году есть ряд продаж и внедрений в коммерческую практику.

Эйдос-Медицина

В 2018 году ведет разработку промышленного шестиосевого робота. / 2018.05.04 business-gazeta.ru

, Россия, Новосибирск

Разработка, собственное производство и продажа линейных роботов собственного производства. Активные продажи роботов в 2018 году.

, Россия, Москва

Портальный робот PSX, обеспечивающий высокоточное позиционирование технологического средства (сварочного аппарата, гидроабразивной резки, лазерного датчика) по 5 координатам в пространстве.

Зарубежные производители промышленных роботов

Крупнейшие и наиболее заметные на рынке

Electroimpact, США (гигантские AFP-автоматы для 3D-печати из композитных материалов)

, Япония

Разработчик-производитель промышленных роботов различного типа. Один из мировых лидеров в этой области.

Fetch Robotics

Разработчик автономных роботов Fetch & Freight, предназначенных для использования на складах и в центрах выдачи заказов.

Foxconn

2016.10 На предприятиях Foxconn Group установлено уже 40 тысяч промышленных роботов FoxBot. Ежегодно выпускается около 10 000 роботов. Большую часть компонентов для них (кроме приводов и редукторов), Foxconn выпускает самостоятельно, включая контроллеры и ПО. Не исключено, что Foxconn будет разрабатывать и другие роботы, например, медицинские.

Honyen (Honyen Automation Equipment Co., Ltd.), Китай, Шанхай

Производитель промышленных роботов с мощностью производства до 1000 штук в месяц. Производит роботов для сварки, резки, гибки, упаковки, сборки, сортировки, лазерной сварки и других.
Сварочные: HY1006A-144; HY1006A-163; HY1006A-180; HY1006A-200; HY1010A-144; HY1010A-168; HY1010A-180;
Для плазменной резки: HY1010A-144; HY1010A-168; HY1010A-180;
Для лазерной резки: HY1010A-144; HY1010A-168; HY1010A-180;
Манипуляторы: HY1001A-038A; HY1001A-050A; HY1004A-063A; HY1008A-071A; HY1008A-090A; HY1005A-85; HY1003A-98; HY1010B-140; HY1020B-180; HY1010A-143; HY1020A-164; HY1010A-180; HY1050A-200; HY1165B-315
SCARA: HY1001C-040A; HY1002C-060A

, Япония

Разработчик-производитель промышленных роботов, число моделей которых измеряется десятками.

, Германия

Разработчик-производитель промышленных и коллаборативных роботов. Системный интегратор. Одна из 4 крупнейших в мире компаний в области промышленных роботов на 2015 год. В июне 2016 года китайская Midea официально заявила о предложении купить 30% акций компании. что в совокупности с уже имеющимся пакетом акций, обеспечит Midea позицией основного акционера. Voith Group в июле 2016 заявила о готовности продать 25% акций компании.

OTK Daihen, Япония

Panasonic, Япония

, США

Разработчик и производитель коллаборативных промышленных роботов. Известные модели - Baxter первого и второго поколений.

Sepro Group, Франция

Крупнейший производитель промышленной робототехники во Франции - Sepro Group . В мае 2017 года компания объявила о решении расширять бизнес во Франции и США. Планируемые инвестиции - $11 млн евро. Вырастет площадь головного предприятия в Ла-Рош-сюр-Йон, Франция до 20 тыс. кв. м, неподалеку откроется учебный центр. Запуск в эксплуатацию планируется к лету 2018 года. В США будет расширено предприятие в Уоррендейле, сборка роботов здесь начнется в 4q2017. Объем продаж роботов компанией растет вот уже четыре последних года - с 1.3 тыс в 2012 году до более 2.7 тыс в 2017 году. Сайт компании: http://www.sepro-group.com/products_archive/

, Дания

Промышленные роботы, collaborative тип. Основана в 2005 году. Основной конкурент Rethink Robotics, США. Принадлежит концерну Teradyne

Wittmann

Промышленные роботы линейного типа.
В 2017 году было продано 50 тыс. штук роботов. Компании пришлось расширять производственные мощности предприятий по производству роботов в Мошонмадьяроваре, Венгрия, и на головном предприятии в Вене, Австрия. Идет расширение производства на заводах в Нюрнберге, Германия и Писеке, Чешская Республика.

, Япония

Один из крупнейших в мире производителей промышленных роботов. Линейка - Motoman.

, США

Разработчик и производитель промышленных роботов, а также компонентов для их производства.

Синьсун, Китай

Раположен в Шэньяне, провинция Ляонин. Разрабатывает и производит промышленных роботов с 1993 года. В 2001 году объем продажи роботов компанией составлял 100 млн юаней. В 2011 году на долю компании приходилось до трети китайского рынка роботов. В том числе выпускает мобильные промышленные роботы, которые пользуются спросом не только в Китае, но и, например, в США и Канаде.

Роботизация и автоматизация производства могла бы существенно повысить качество продукции, ускорить жизненный цикл изделий, выведя российскую промышленность на новый уровень производительности. Однако пока отечественный рынок промышленной робототехники развивается очень медленно. Потенциальные потребители плохо осведомлены о возможностях современных роботов и не спешат инвестировать в это направление. В свою очередь невысокий спрос вкупе с рядом других факторов тормозит развитие отечественного производства робототехнических комплексов. Есть ли выход из создавшейся ситуации?

Преодолеть зависимость от автопрома

В России, как и во всем мире, основными потребителями промышленных робототехнических комплексов (РТК) выступают автомобилестроительные предприятия. Вплоть до 2015 г. серийным производством роботов в нашей стране занимался «Волжский машиностроительный завод» (г. Тольятти), он выпускал до 200 единиц оборудования в год для «АвтоВАЗа», однако впоследствии был закрыт. Альтернативного российского серийного производства роботов для автопрома не появилось. На сегодняшний день значительная часть РТК импортируется, при этом объем рынка по зарубежным меркам очень и очень скромен: всего несколько сотен роботов в год.

За рубежом вслед за автопромом роботизацией активно занимается средний и малый бизнес из других отраслей. Правда, здесь роботы выполняют не основные, а вспомогательные технологические операции. Например, загружают детали в станки или занимаются паллетированием (упаковка грузов в компактные транспортировочные единицы). В России такие вспомогательные операции зачастую не автоматизируются в принципе.

Вопрос в том, будет ли меняться ситуация в будущем? С учетом того, что отечественный рынок автомобилей сегодня переживает не лучшие времена, спрос на робототехнику в других отраслях мог бы стать существенным подспорьем для производителей и интеграторов РТК. Однако пока российские компании, работающие на рынке промышленной робототехники, не ждут радикальных перемен.

«До сих пор основным потребителем роботов в России остается автопром, — отмечает Вадим Ипполитов, коммерческий директор холдинга Белфингрупп (г. Ижевск). — В этом отношении ничего не изменилось. Но есть и позитивные моменты. Другие отрасли понемногу начинают включать в свои программы перевооружения роботизированные технологии. Мы предполагаем, что в ближайшем будущем внедрять РТК начнут предприятия оборонно-промышленного комплекса, железнодорожного машиностроения, судостроения, производители товаров народного потребления, пищевой промышленности, представители нефтегазовой отрасли, производители строительных металлоконструкций. В целом рынок робототехники в РФ имеет огромный потенциал».

«На наш взгляд, автопром был, есть и еще долго будет оставаться основным потребителем промышленной робототехники, как в мире, так и в России, — считает Анатолий Перепелица, директор УРТЦ «Альфа-Интех» (г. Челябинск). — Однако российские интеграторы в настоящее время в значительной степени отстранены от этого рынка, так как приходящие в российский производственный сектор иностранные автомобильные бренды имеют давние связи с крупными зарубежными интеграторами, которым и «отрезают больший кусок пирога» роботизации своих предприятий. У российских интеграторов пока немного примеров реализации достаточно крупных проектов для автопрома.

Перспективными же отраслями для внедрения промышленной робототехники в России мы считаем небольшие предприятия по производству компонентов для автопрома и предприятия пищевой промышленности (в части упаковки, маркировки, паллетирования). Большой потенциал роботизации имеется на предприятиях военно-промышленного комплекса, что, прежде всего, связано со значительными объемами финансирования данной отрасли со стороны государства».

Здесь возникает второй вопрос: если робототехника перестанет быть прерогативой автопрома и придет в другие отрасли промышленности, какими будут требования новых потребителей?

Не вместо человека, а вместе с ним

«До недавнего времени в мире существовало только одно серьезное направление — промышленная робототехника, — отмечает Альберт Ефимов, руководитель робототехнического центра фонда «Сколково». — Как правило, это дорогостоящие решения для крупного бизнеса, предполагающие, что роботы выполняют основные производственные операции за человека. Сейчас в силу различных технологических причин (появление дешевых сенсоров, повышение мощности процессоров) началось активное развитие сервисной робототехники. Сервисные роботы оказывают людям какие-либо услуги — повышают их физическую силу, транспортируют предметы или общаются с человеком. Самый простой пример — робот - пылесос, уже сегодня продаваемый миллионами по всему миру».

Многие считают, что сервисная робототехника больше ориентирована на потребительский рынок, однако на деле это совсем не так. Роботы могут оказывать людям услуги не только в быту, но и на производстве. Более того, сама грань между понятиями «промышленная» и «сервисная робототехника» постепенно стирается. Более актуальным становится деление на заменяющую и помогающую робототехнику. При этом маржинальность сервисной робототехники намного превышает маржинальность промышленной робототехники — один медицинский робот может стоить несколько миллионов долларов.

«Сегодня стоит обратить внимание на рынок ассистивной (помогающей) робототехники: по мнению экспертов «Сколково» это наиболее перспективное направление, — уверен Альберт Ефимов. — Ассистивный робот помогает повысить производительность и снизить трудоемкость операций; он работает не вместо человека, а вместе с ним. Общая оценка мирового рынка ассистивной робототехники свыше 5 трлн долларов».

Действительно, ведущие мировые производители роботов — к примеру, Fanuc и Kuka — сегодня активно продвигают новые модели коллаборативных роботов — машин, способных работать с человеком рука об руку. Эти роботы могут привезти сборщику необходимые комплектующие со склада или подать тяжелую деталь. Благодаря чувствительным сенсорам коллаборативные манипуляторы ощущают малейшее препятствие на пути и безопасны для человека. Однако такие машины стоят достаточно дорого, и в нашей стране пока не слишком популярны.

«Похоже, что российская промышленность не готова к внедрению коллаборативных роботов, — считает Анатолий Перепелица. — На сегодняшний день в РФ поставлены считанные единицы таких машин, да и то в основном в учебные заведения. Хотя сама по себе технология доступна на нашем рынке, как минимум, три года».

«В настоящий момент российская промышленность только знакомится с обычными промышленными роботами, поэтому начало внедрения коллаборативных роботов затянется на неопределенный срок, — соглашается с коллегой Вадим Ипполитов. — Думаю, первыми пользователями коллаборативных роботов будут автопроизводители: они станут использовать их для выполнения тех операций, где необходима физическая сила и точность. Со временем коллаборативные роботы, несомненно, будут набирать популярность в различных отраслях».

Говоря о других трендах российского рынка, Вадим Ипполитов прогнозирует развитие роботизированных аддитивных технологий и расширение списка «профессий» промышленных роботов.

По мнению Анатолия Перепелицы, уже сегодня явно обозначилась такая тенденция, как рост гибкости применения РТК и обусловленное этим увеличение числа приложений, где требуется не повторение исполнения одной программы множество раз (как на массовом производстве), а исполнение множества программ ограниченное число раз (средне- и мелкосерийное производство с широкой номенклатурой продукции).

«Вследствие этого возрастает роль программного обеспечения, сенсорики, машинного зрения, а программное обеспечение движется в сторону интеллектуализации алгоритмов, — подчеркивает руководитель «Альфа-Интех». — В этом же тренде находится и распространение коллаборативной робототехники. Полагаю, в ближайшие годы все больше и больше будут распространяться алгоритмы самопрограммирования роботов для определенного круга задач, а так же параметрические программы для роботов».

Избавиться от устаревших стереотипов

Развитию российского рынка робототехники для промышленности препятствует несколько факторов. Но наши эксперты сходятся во мнении, что один из главных — низкая осведомленность потенциальных потребителей о возможностях современных РТК.

«Рынок пока не понимает, в чем преимущества и экономическая привлекательность роботизации, — отмечает Марко Делаини, генеральный директор Fanuc в России. — Но это не новая проблема. Подобную ситуацию мы уже видели некоторое время назад в Европе. Сейчас европейские компании знают, что с помощью роботов можно существенно поднять производительность и качество продукции, улучшить экономические показатели в целом. С целью продвижения идеи роботизации в этом году мы вместе с НАУРР (Национальная ассоциация участников рынка робототехники) проводим чемпионат роботов. Причем это не бои, а соревнование по созданию ячеек автоматизации».

«Практически у каждого интегратора есть пул инновационных идей, которые могут быть толчком к развитию роботизации, есть квалифицированный персонал и опыт решения рискованных задач, — отмечает Анатолий Перепелица. — Но тормозит процесс низкий уровень осведомленности потребителей. Даже на продвинутых предприятиях «Роскосмоса» и «Росатома» нередко ошибочно полагают, что робот — это машина, стоящая на конвейере и выполняющая массовые операции. Считаю, что необходима организация кампании по продвижению робототехники под эгидой НАУРР».

Есть и другие причины, препятствующие активной роботизации производств. Это низкий уровень автоматизации многих российских производств. Нехватка у предприятий средств на глобальные проекты по техническому перевооружению и отсутствие удобных финансовых инструментов для поддержки тех, кто внедряет РТК.

Многие производители не торопятся заменять рабочих роботами в силу относительно низкой стоимости ручного труда в стране. Однако они забывают, что роботизация влияет также и на показатели качества, производительность и по итогу все равно оказывается более выгодной.

Быть готовым к кооперации

«В соответствии с приказом Минпромторга к 2020 г. не менее 30 % продаваемых в России промышленных роботов должно производиться на территории страны, — рассказывает Владимир Серебренный, заместитель генерального директора по технологическому развитию ГНЦ РФ ФГУП «НАМИ» (НИИ в области развития автомобилестроения). — Это предпосылка к тому, чтобы в России было налажено собственное производство промышленных роботов, либо локализовано производство мировых производителей. Однако пока приход инвесторов тормозит малый объём продаж и таможенная политика, устанавливающая нулевую пошлину за ввоз готового робота и до 20 % пошлины на комплектующие».

«Это неудивительно, — считает Альберт Ефимов, — экономикой невозможно управлять на основе приказов. Если роботов невыгодно производить и покупать, то их никто не будет делать».

Анатолий Перепелица указывает, что парадоксальная ситуация складывается и в части налогообложения. Так в Налоговом кодексе есть статьи, которые позволяют разработчикам программного обеспечения не платить НДС. От налога могут быть освобождены организации, ведущие НИР и ОКР. При этом производителям и интеграторам в сфере робототехники, которые по сути занимаются тем и другим, сложно доказать свое право пользоваться этими льготами.

Изменения в сфере политики налогообложения и таможенных пошлин помогли бы изменить ситуацию к лучшему. Что касается малого объема рынка, выходом может стать создание производств роботов, изначально ориентированных на экспорт.

При этом важно не оставаться в изоляции, а быть открытым к достижениям мирового прогресса. Не смотря на санкции и прочие геополитические сложности, наши эксперты уверены, что создать в России собственное производство роботов с нуля невозможно, да и не нужно.

«На наш взгляд, не так важно иметь производство роботов полного цикла внутри страны, но важно участвовать в международной кооперации, быть создателем тех или иных технологий, — считает Марко Делаини. — В этом смысле потенциал России очень велик. К примеру, здесь создается мощное программное обеспечение. А софт — это наиболее дорогой компонент в составе роботизированного комплекса по сравнению с «железом». Так сегодня манипулятор составляет в среднем не более 20-30 % от общей стоимости продукта».

Аналогичного мнения придерживается и Альберт Ефимов: «Сегодня весь мир находится в состоянии глобальной кооперации. Нельзя отгораживаться от этого процесса. Напротив, способность России встроиться в эту глобальную кооперацию — наш шанс уверенно занять свою нишу этого впечатляющего рынка. Да, в России есть определенные проблемы с дизайном, с производством «железа». Но конкурентные преимущества роботов будут основаны в первую очередь на программном обеспечении — а это то, что у нас очень хорошо получается. Между прочим, ПО — третья статья по объему российского экспорта после углеводородов и вооружений».

По наблюдениям эксперта из «Сколково», именно готовность к кооперации — признак профессионализма и зрелости компании. Только начинающие производители роботов стремятся все делать сами, а более опытные — находят профессионалов, создающих конкурентный дизайн и «железо». Это позволяет предложить продукт, который интересен не только в России, но и за рубежом.

«Это миф, что в России нет производства роботов, — говорит Альберт Ефимов. — На самом деле наши компании не только производят роботов для внутреннего рынка, но и продают их за рубеж, к примеру, в Японию и Китай. Только речь идет о сервисных, а не промышленных роботах. Этот сегмент развивается без господдержки, не считая грантов «Сколково». И развивается весьма активно, обгоняя промышленную робототехнику. Впрочем, лет через пять такое деление вообще не будет актуальным. Постепенно условно «сервисные» роботы придут и в промышленность. Они возьмут на себя часть операций и помогут оптимизировать нагрузку, ложащуюся на человека. Главный тренд сегодня — конвергенция продукта и услуги в промышленности. А это будет означать конвергенцию промышленной и сервисной робототехники.

Думаю, в перспективе флагманом российского рынка робототехники будет бизнес и государственные структуры, а не частные лица. Хотя в диапазоне от 30 до 50 лет стоит ожидать воплощения в жизнь фантазий из голливудских фильмов: к этому времени роботы станут привычным явлением не только в промышленности, но и в повседневной жизни обычного человека».

Екатерина Зубкова

Фото «Белфингрупп» и «Альфа-Интех»

Please enable JavaScript to view the

Список RBR50 знаком многим, специализирующимся в области робототехники - это 50 компаний, отобранных в редакции roboticsbusinessreview.com. Принцип отбора таков - в список включаются компании, которые оказали наиболее значимое влияние в области робототехники по итогам 2015 года. Уверен, что вам знакомы большинство этих компаний. А если не все, то стоит обратить внимание не те, что еще не знакомы - это они движут вперед развитие робототехники на планете. Отмечу, что среди них, к сожалению, по-прежнему нет российских компаний.

Другие страны представлены в следующих пропорциях: Германия - 1 (2%), Дания - 1 (2%), Индия - 1 (2%), Канада - 3 (6%), Китай - 2 (4%), Объединенное королевство - 2 (4%), США - 32 (64%), Тайвань - 1 (2%), Швейцария - 2 (4%), Южная Корея - 1 (2%), Япония - 4 (8%).

Остается ждать, когда Россия наконец бросит заниматься тем, чем занимается сейчас, сосредоточит усилия в области развития современных технологий, и попробует вновь стать полноценным участником международного технологического соревнования. Если, конечно, к тому времени не будет слишком поздно.

, США

Частная компания, фокусирующаяся на роботике. США, Berkeley, CA. 3drobotics.com Разрабатывает инновационные, гибкие и надежные персональные беспилотники, а также технологии в области БЛА, предназначенные для частного использования и применений в бизнесе. Платформа Solo предназначена для аэросъемки с последующим анализом данных для составления карт и исследований, 3D-моделирования и так далее. Сегменты рынка: сельское хозяйство, строительство, безопасность, исследования.

, Швейцария

Публичная компания, специализирующаяся в области промышленных роботов и манипуляторов. Штаб-квартира в Цюрихе, Швейцария. Ведущий производитель промышленных роботов, модульных производственных систем и оказания услуг. Компания обращает особое внимание на производительность решений, качество продуктов и безопасность работников. ABB расширяет свою деятельность на новые рынки, а также активно работает в области традиционного производства для повышения его гибкости и конкурентоспособности. Сегменты рынка: энергетика, промышленная автоматизация, цепочки снабжения и ритейл, промышленность, манипуляторы. new.abb.com/products/robotics

, США

Один из лидеров в области поставок мобильных роботов курьеров. Робот автоматизирует внутренние логистические задачи за счет автономной навигации в условиях динамично изменяющейся и сложной рабочей среды, например, доставляя медикаменты и материалы в госпиталях и больницах.

, США

Публичная компания с фокусом на медицинскую робототехнику, ассистивную робототехнику, андроидов, промышленные роботы, манипуляторы, мобильную робототехнику. Штаб-квартира - в США.
Основу робототехнических направлений компании составили приобретенные в 2013 году компании: Boston Dynamics, Bot & Dolly, Holomni, Industrial Perception, Meka Robotics, Redwood Robotics, Schaft, Inc.

, США

Компания является онлайн-ритейлером. Компания обслуживает клиентов в США и во всем мире. Для этого Amazon использует робототехнику в своих логистических цепочках, в частности, роботов KIVA на складах компании.

, США

ASI, Autonomous Solutions, Inc. занимается разработками железа и ПО беспилотных систем для использования в добывающих отраслях, фермерстве, автоматизации, промышленной робототехники, систем безопасности и для военных.

, США

Стартап в области промышленной робототехники, которая комбинирует специализацию в области систем распознавания изображений и автономных мобильных роботов. Цель - повышение эффективности, "прозрачности" и безопасности предприятий и складов.

Carbon Robotics, США

, Канада

Компания специализируется в разработке и производстве беспилотных решений для научных, промышленных и военных применений.

Cyberdyne, Япония

Экзоскелеты HAL3, HAL5, Cyberdyne for Labor Support

, США

Разработка решений для беспилотных и роботизированных автомобилей.

, Китай

Разрабатывает и производит беспилотные системы и камеры для беспилотных систем, предназначенные для использования в хобби-секторе, производстве кинофильмов, сельском хозяйстве, поисковых и спасательных работах, в энергетике и так далее.

Ekso Bionics, США

Экзоскелеты Ekso (eLEGs), ExoClimber, ExoHiker, Energid Technologies, США

EPSON Robots, США

, Япония

Разработка и производство промышленных роботов.

Fetch Robotics, США

, США

Корпорация iRobot разрабатывает и строит роботов для частных потребителей, правительственных структур и промышленных предприятий.

, США

Домашний семейный робот. Социальный робот.

Kawasaki Robotics, США

Knightscope, США

KUKA Robotics, США

Промышленные роботы, разработка и производство

, США

Корпорация специализируется в области создания систем обеспечения глобальной безопасности, разрабатывает производит и интегрирует продукты и услуги. Компания занимается бизнесом в широком спектре отраслей - космос, телеком, электроника. информация, аэронавтика, энергетика, интеграция систем. Известны ее разработки дронов и пассивного экзоскелета Fortis.

, США

Частная компания, специализрующаяся в области мобильных роботов. Предлагает решения для использования на складах, которые могут увеличивать производительность труда в 5-8 раз по сравнению с использованием традиционных методов, основанных на применении электрокаров.

, США

Специализируется на разработке, производстве и продажах роботов для использования в таких отраслях, как электроника, телекоммуникации, коммунальное хозяйство, фармацевтика, пищевая промыщленность, производство компонентов для автоматизации.

Open Bionics, Объединенное Королевство

ReWalk Robotics, США

Медицинские экзоскелеты ReWalk

Robotiq, Канада

Samsung, Южная Корея

Разработка и производство военных роботов, интерес к другим сегментам рынка, например, экзоскелетам.

, США

Компания разрабатывает сервисных автономных роботов для использования в индустрии услуг. Флагманский продукт - это робот Relay, который уже используется в ряде гостиниц США.

Schunk, Германия

, США

Частная компания, фокусирующаяся на мобильной робототехнике. Основана в 2003 году, занимается внедрением технологий на основе компьютерного зрения в отрасль перемещения грузов (товаров на складах). Основной продукт - робокары (робопогрузчики).

Siasun Robot & Automation Co.Ltd., Китай

SoftBank Robotics Corporation, Япония

Дочернее предприятие Aldebaran Robotics, роботы андроидного типа Pepper

Soil Machine Dynamics Ltd., Объединенное Королевство

Swisslog, Швейцария

Логистические системы, складские роботы, роботы-курьеры, например, Transcar

Titan Medical, Канада

Toyota, Япония

ULC Robotics, США

разработчик и производитель роботов-краулеров для ремонта и герметизации трубопроводов (изнутри), например, робот CISBOT

Universal Robotics, Inc., Дания

промышленные коллаборативные роботы серии UR, например, UR-10 и UR-5

Vecna Technologies, США

, США

робот-ассистивные хирургические системы, проще и дешевле по-сравнению с da Vinci

, США

конструкторы для самостоятельной сборки роботов, например, VEX Classroom & Competition Super Kit 276-3000, VEX Dual Control Starter Kit, VEX IQ Super Kit

, США

производитель промышленных роботов.

производитель беспилотников, в том числе БЛА для использования в сельском хозяйстве

, США

Разработка и производство промышленных роботов

Чтобы не пропустить интересную для вас новость, подпишитесь на анонсы публикаций

Российский рынок роботизированных технологий пока очень молод и находится в начальной стадии развития. В ближайшие десять лет спрос на промышленные роботы будет целиком и полностью зависеть от интереса, проявленного к ним владельцами предприятий. Только тогда роботизация нашей промышленности станет таким же необратимым процессом, как уже необратима сегодня модернизация отечественных предприятий. Преимущества от перехода на роботизированные технологии неизбежно выведут многие наши предприятия на новый технологический уровень, повысят качество выпускаемой ими продукции, производительность и гибкость производственных процессов.

В обиходе слово «робот» зачастую трактуется неоднозначно. Если не затрагивать область научной фантастики, то «роботами» принято называть машины, частично или полностью заменяющие человека в различных сферах его деятельности, преимущественно связанной с производством промышленной продукции.
Говоря о классификации промышленных роботов, отметим, что наиболее существенно они отличаются друг от друга:

  • по областям применения: есть промышленные роботы, роботы для спецприменений и т.д.;
  • по расположению в пространстве: это стационарные, с линейной осью, портальные;
  • по принципам управления: роботы с программным или с дистанционным управлением.

Хотя под общим термином «робот» объединено множество разнообразных машин, часто не имеющих друг с другом ничего общего, в настоящее время оно по критерию основных направлений развития техники объединилось в одну предметную область – робототехнику.

К промышленной робототехнике относятся вспомогательные и технологические роботы. Вспомогательные роботы используют в качестве дополнительного технологического оборудования – это, например, загрузочные роботы, обслуживающие металлорежущие станки, прессы и т.п. Технологические роботы применяются в производстве в качестве основного технологического оборудования для точечной и контурной (лазерной, плазменной) сварки, гидроабразивной резки, абразивной безразмерной обработки (полирования, зачистки), для сборки изделий и т.п.
Промышленные роботы и роботы для специальных применений представляют собой принципиально разные типы машин, существенно отличающиеся друг от друга и по области применения, и по конструкции, и по методам управления.
Конструктивно промышленные роботы выполняются как машины на базе стационарной руки, как правило, с шестью степенями подвижности (шарнирами), по кинематическому строению подобной руке человека. Основное требование к конструкции промышленных роботов – надежность в условиях многолетней эксплуатации на повторяющихся операциях, а также точность позиционирования, грузоподъемность, скорость программно заданных движений.

Робототехника для специальных (непроизводственных) применений представлена машинами для выполнения работ в местах, в которых присутствие человека затруднено либо вовсе исключено. Прежде всего, это мобильные роботы с дистанционным управлением на базе автономных транспортных средств, управляемые оператором по проводной или радиосвязи, из безопасного места. Такие роботы используются, в частности, для обезвреживания опасных предметов (например, мин – см. рис.), для выполнения работ в безвоздушном пространстве, под водой, при разборе завалов и т.п.

Некоторые технологические операции, например, безразмерная финишная обработка сложнопрофильных деталей, могут быть реализованы как с применением технологических роботов, так и с применением станков типа «обрабатывающий центр». В общем случае задачей и станка, и робота является реализация относительного движения инструмента и обрабатываемой детали по заданному закону с заданной точностью. Закон относительного движения описывается в технологической программе. Однако можно отметить два классификационных признака, выделяющих технологические роботы в особую группу машин. Первый – это отношение рабочей зоны (области, в которой перемещается инструмент) к размерам машины. Рабочая зона станка обычно существенно меньше самого станка и находится внутри него, тогда как рабочая зона робота больше робота и окружает его. Таким образом, робот находится внутри своей рабочей зоны. Второе отличие – в методе программирования. Закон движения инструмента программируется в станках с ЧПУ в абсолютной системе координат. В роботах базовые точки траектории программируются методом обучения относительно специального калибрующего инструмента.

Большинство современных технологий обработки изделий, таких как точечная контактная, шовная электродуговая, лазерная сварка; лазерная, микроплазменная и гидроабразивная резка; сборка и финишная абразивная обработка пространственно сложных изделий требуют движения инструмента по траекториям сложной формы с высокой точностью и фиксированной скоростью. Ранее эти операции выполнялись вручную, однако применяемый инструмент часто являлся слишком тяжелым для человека. Кроме того, не всегда возможно обеспечить требуемое качество движения инструмента по траектории, например, точность и постоянство скорости. Именно на таких операциях сегодня преимущественно применяются технологические роботы.
В связи с относительно небольшими объемами мирового рынка промышленных роботов (если сравнивать, например, с объемами производства металлорежущих станков) и сложностью выхода на этот рынок сложился довольно узкий круг фирм, обладающих компетенциями и ресурсами, необходимыми для производства промышленных роботов. Это, например, японские Fanuc, Motoman, Kawasaki, Yaskawa, шведская АВВ, германские KUKA Roboter GMBH, Reis, итальянская COMAU и др. Все эти фирмы производят роботы собственной конструкции и имеют оригинальное системное программно-математическое обеспечение для своих систем управления роботами. Комплекс технических средств, входящих в арсенал производителей роботов, также включает в себя такие компоненты, максимальная эффективность которых достигается только в совокупности ряда систем:

  • модельный ряд универсальных манипуляторов;
  • система контурного управления;
  • сенсорные системы для адаптации робота;
  • навесное периферийное и технологическое оборудование;
  • система калибровки манипулятора;
  • системы технологической подготовки производства, проектирования приспособлений и автономного программирования робота.

На фоне анализа мировых тенденций развития роботизированных устройств можно сделать вывод, что автоматизация является доминирующим средством в достижении успеха в условиях глобализации международных экономических отношений, хотя и не единственным способом побеждать в конкурентной борьбе. Конечно, немалые возможности скрыты и в стимулирующей роли заработной платы персонала, и в привлечении рабочих к управлению производством и повышению качества продукции. Достаточно вспомнить японские «кружки качества», которые распространились по всему миру. Направленность их деятельности затрагивает теперь не только вопросы качества, но и снижение стоимости выпускаемой продукции, обеспечение техники безопасности и другие важные аспекты. Автоматизация создает принципиальные возможности для улучшения условий производства и повышения производительности труда, роста качества продукции, сокращения потребности в рабочей силе и в систематическом повышении прибыли, что позволяет изменить тенденцию развития, сохранять освоенные рынки и завоевывать новые.
Однако на пути автоматизации стоит ряд факторов, которые необходимо учитывать. Прежде всего следует понимать, что заниматься проблемами автоматизации надо начинать с предварительной проработки изделий, технологии и предприятия в целом. Только тщательная подготовка конструкции изделия, оценка стабильности технологии и надежности имеющегося на производстве парка оборудования позволят извлечь наибольшую пользу от применения промышленных роботов.

Ярким примером того, как роботизированные технологические линии составляют основу производства, является сегодня автомобилестроение. В связи с этим все промышленно развитые страны, производящие авто, также имеют фирмы, занимающиеся разработкой и производством роботов. Это позволяет им опережать конкурентов при внедрении новых технологий в автомобильное производство.
Западные фирмы-производители роботов зачастую используют свое право за счет ценовой политики и директивно-адресных действий в собственных интересах и в интересах наиболее перспективных клиентов регулировать развитие роботизированных технологий, вплоть до выборочного блокирования освоения некоторых из них. Не секрет, что они тесно сотрудничают с рядом ведущих зарубежных автомобилестроительных концернов и связаны с ними многочисленными соглашениями о нераспространении ноу-хау.
Преимущественно развитие технологических роботов в мировой индустрии пришлось на период упадка отечественной промышленности, в результате чего область применения роботов в России ограничилась до нескольких предприятий. И сегодня темпы внедрения роботизации в производственные мощности отечественных предприятий значительно отстают от зарубежных. В большинстве случаев наши предприятия, исходя в основном из экономических соображений, ограничиваются механизацией ручного труда. Разумеется, при таком подходе они оказываются неспособными составить сколь-нибудь серьезную конкуренцию высокотехнологичным производствам и тем более конкурировать с ними на динамично развивающемся рынке.

Если раньше автоматизация и состояла в замещении физического труда посредством механизации основных и вспомогательных операций производственного процесса, то сегодня глубокая автоматизация промышленности заключается в развитии машинного производства, при котором функции управления и контроля, ранее выполнявшиеся человеком, передаются приборам и автоматическим устройствам. Поэтому устоявшееся в нашей стране представление о промышленных роботах исключительно как о вспомогательных загрузочно-разгрузочных устройствах, обслуживающих станки или прессы, совершенно не соответствует современному уровню развития промышленной робототехники и практике применения роботов в производстве.
И все же сегодня многие передовые российские производственные предприятия, руководители которых ознакомились с возможностями роботов на зарубежных выставках и предприятиях, все чаще начинают задумываться об их применении у себя. Но, для того чтобы успешно внедрять робототехнику в российскую промышленность, недостаточно просто найти подходящих поставщиков оборудования. Вопреки распространенному у нас мнению о том, что любую технологию (в том числе роботизированную) и любое оборудование можно сегодня свободно купить и использовать, не соответствует действительности как минимум по двум причинам:

  • ведущие концерны уделяют большое внимание развитию ключевых технологий, сохранению контроля над их распространением и недопущению их перетекания к конкурентам;
  • в технологически развитых странах существуют гласные и негласные ограничения на поставки в Россию уникальных передовых технологий, которые усугубляются пока достаточно распространенным настороженным отношением зарубежных разработчиков и поставщиков к российским предприятиям.

Другими неблагоприятными факторами, объективно сдерживающими применение промышленных роботов в России, являются внутренние проблемы:

  • отсутствие у российских предприятий не только собственного опыта применения роботов, но даже общего представления о технических и экономических основах роботизированных технологий;
  • отсутствие квалифицированных кадров, способных обеспечить эксплуатацию роботов;
  • крайняя недостаточность специалистов, способных спроектировать роботизированные ячейки и линии, внедрить роботы и осуществить технологическую подготовку роботизированного производства.

С решения этих ключевых проблем и следует начинать внедрение и освоение робототехники на производстве.
Кадры, как известно, решают если не все, то очень многое. Каковы же требования к квалификации персонала предприятия, управляющего роботизированным технологическим комплексом? Необходимо понимать, что промышленные роботы, это не космические технологии, познание которых потребует десятилетий упорного труда. Современные промышленные роботы удобны и легки в эксплуатации. Стандартный курс обучения работы с ними занимает около трех дней и позволяет получить достаточно знаний для самостоятельного управления роботом или участком станков с роботом-загрузчиком, а эксплуатационный опыт в дальнейшем позволит полностью освоить все возможности и особенности роботизированных технологий.
Таким образом, без большого преувеличения можно утверждать, что управлять роботами сможет практически любой технически грамотный специалист, даже без высшего образования, и для этого не потребуются люди с уникальными знаниями и опытом. Для обслуживания роботизированного комплекса, как правило, достаточно одного человека. Его работа сводится к «установке/снятию» обрабатываемых деталей и нажатию кнопки «Старт» для запуска системы.
Если же говорить о людях, которые создают рабочие программы для роботов, обучают их, производят элементарный сервис, то такие специалисты в обязательном порядке должны проходить специальное обучение. Необходимо осуществлять подбор людей для такого обучения с наличием высшего технического образования, желательно в совокупности с навыками программирования.
Примером нестандартного подхода к решению задач автоматизации производства является внедрение уникального для нашей страны производственного участка с несколькими промышленными роботами, которое сейчас проводится на пермском предприятии ОАО «Авиадвигатель» специалистами компании «Солвер». Основной задачей выполняемого проекта является организация на вновь созданном участке выпуска образцов для исследования прочностных свойств материалов. Цель – создание и отработка стабильной технологии их производства. Уровень роботизации участка должен обеспечивать выпуск образцов в количестве 600 штук в месяц.

Специалистами «Солвер» вместе с заводчанами была разработана электронная модель будущего производства, очерчен круг задач, решаемых робототехническим комплексом, проведена оценка его производительности, эффективности и окупаемости. В результате заказчик получил виртуальную картину будущего производства, которая на данном этапе успешно воплощается в реальность. Были более четко поняты, осознаны и впоследствии скорректированы требования к оборудованию, персоналу, организации технологической подготовки производства и самому производству. Таким образом, при привязке к определенному результату был взят курс на построение эффективного производства и его последующее сопровождение.
При выработке концепции комплекса его основой стала методология «трех проектов», разработанная и успешно применяемая специалистами компании «Солвер». В создаваемое с нуля производство внедрено четыре промышленных робота в составе роботизированного комплекса.
Вот наиболее важные преимущества, которые уже частично достигнуты нашими специалистами на данном этапе проекта в «Авиадвигателе»:

  • сокращение трудоемкости производства продукции;
  • увеличение его пропускной способности;
  • значительное повышение качества изделий-образцов;
  • снижение потребности в производственных площадях;
  • сокращение требований к квалификации операторов, занятых в основном обслуживанием роботизированных технологий;
  • гибкость в перенастройке системы. Роботизированный комплекс может осуществлять резку деталей различных форм и размеров, оператору надо лишь модифицировать библиотеку управляющих программ;
  • технологическая гибкость. Один робот может выполнять резку образцов, другой – позиционирование заготовок, третий – их перемещение к различным участкам цеха. А время на их переоснащение можно минимизировать путем использования дополнительного оборудования для смены инструмента;
  • снижение вредных воздействий на людей.

Необходимо отметить, что производители роботов не занимаются созданием технологий для конечного заказчика, данные задачи выполняют только квалифицированные системные интеграторы, имеющие партнерские или дилерские отношения с производителями оборудования. И, безусловно, проекты такого масштаба невозможно осуществить без тесной работы коллектива завода и специалистов консалтинговой компании, способных совместными усилиями вырабатывать нетривиальные решения.

КРАТКИЕ ВЫВОДЫ

1. Повышение качества продукции одновременно с уменьшением серийности и частым изменением выпускаемых моделей изделий является трендом современного рынка. Выполнение этих условий невозможно без развития автоматизации технологических производственных процессов. В ряде ключевых технологий, например, в сварке, лазерной обработке, термической резке, окраске, дальнейшее развитие возможно только с применением технологических роботов.
2. Альтернативой технологической зависимости от зарубежных держателей ноу-хау могла бы стать разработка сначала опытных, а затем и серийных образцов отечественных универсальных технологических роботов, включая собственную систему управления. Как показал опыт внедрения и эксплуатации промышленных роботов, усвоение передовых роботизированных технологий невозможно прежде всего без наличия ноу-хау на программное обеспечение самих роботов.
3. Наиболее высокотехнологические задачи, возникающие при подготовке производства новых деталей специального назначения, не представляется возможным решить именно из-за отсутствия таких ноу-хау. Например, согласованная работа в автоматическом режиме нескольких роботов от разных производителей не может быть осуществлена на базе стандартного контроллера. Причина – в отсутствии доступа к опционам сенсорики и некоторым интерфейсам в системе управления роботами, которые не производятся, а покупаются в готовом виде, в качестве «закрытой системы». Цены на необходимое специальное программное обеспечение системы управления, устанавливаемые фирмами, весьма высоки.
4. Для создания альтернативы таким технологиям необходимо постоянно вести работы по созданию и развитию собственной системы управления для технологических роботов. Система управления является наиболее наукоемкой частью любой роботизированной технологической ячейки или линии. Без системы управления выпуск собственных технологических роботов и развитие собственных роботизированных технологий невозможны, без наработки собственных ноу-хау в области ключевых технологий, в частности роботизированных, Россия останется в роли догоняющего по отношению к зарубежным конкурентам.
5. Представления о робототехнике и роли промышленных роботов в современном отечественном производстве еще не до конца сформированы. Необходимость развития промышленной робототехники как средства обеспечения конкурентоспособности многих видов машиностроительного производства недостаточно осознается органами государственной власти, ответственными за промышленную политику.
6. Россия неизбежно войдет в качественный период своего развития, когда спрос на роботизированные технологии будет не меньше, чем в развитых странах, а количество квалифицированных компаний, занимающихся проектированием и изготовлением робототехнических комплексов, вырастет в разы.
8. Реалии сегодняшнего дня таковы, что если мы не сократим программное и конструкторско-технологическое отставание по внедрению в производственные процессы роботизированных комплексов в ближайшие 10-15 лет, то отстанем от лидеров мировой индустрии навсегда.

Понравилась статья? Поделитесь ей