Контакты

Сварка аустенитных сталей. Свариваемость аустенитных сталей

Аустенитные стали, обладая рядом особых свойств, применяются в тех рабочих средах, которые отличаются высокой агрессивностью. Такие сплавы незаменимы в энергетическом машиностроении, на предприятиях нефтяной и химической промышленности.

1

К аустенитным относят сплавы с высоким уровнем легирования, которые при кристаллизации обычно образуют однофазную систему, характеризуемую кристаллической гранецентрированной решеткой. Такой тип решетки в описываемых сталях остается неизменным даже в тех случаях, когда металл охлаждается до очень низких температур, называемых криогенными (в районе -200 градусов Цельсия). В некоторых случаях стали аустенитного класса имеют и еще одну фазу (ее объем в сплаве может достигать десяти процентов) – феррита с высокой степенью легирования. В этом случае решетка является объемноцентрированной.

Разделение аустенитных сталей на две группы производится по составу их основы, а также по содержанию в сплаве легирующих компонентов – никеля и хрома:

  1. Композиции на основе железа: содержание никеля – до 7 %, хрома – до 15 %, общее количество легирующих добавок – не более 55 %.
  2. Композиции на никелевой (55 % и более никеля) и железоникелевой основе (в них содержится 65 и больше процентов никеля и железа, причем отношение первого ко второму составляет 1 к 1,5).

В таких сплавах никель увеличивает пластичность, жаропрочность и технологичность стали, а хром отвечает за придание ей требуемой коррозионной и жаростойкости. А добавляя другие легирующие компоненты, можно добиться уникальных свойств аустенитных составов, набор коих и обуславливает служебное предназначение того или иного сплава.

Чаще всего аустенитные стали легируются следующими элементами:

  • Ферритизаторами, которые стабилизируют структура аустенита. К ним относят ванадий, вольфрам, ниобий, титан, кремний и молибден.
  • Аустенитизаторами, коими являются азот, углерод и марганец.

Все указанные компоненты располагаются как в избыточных фазах, так и непосредственно в твердом стальном растворе.

По принятой классификации, учитывающей систему легирования, любая аустенитная сталь может быть причислена к хромомарганцевой либо к хромоникелевой. Кроме того, сплавы делят на хромоникельмарганцевые и хромоникельмолибденовые.

2

Разнообразие добавок позволяет создавать особые аустенитные стали, которые используются для изготовления деталей для конструкций, работающих в высокотемпературных, коррозионных и криогенных условиях. Исходя из этого, аустенитные составы и подразделяют на разные группы:

  • коррозионностойкие;
  • хладостойкие.

Жаростойкие составы не разрушаются при воздействии на них химической среды. Их можно применять при температурах до +1150 градусов. Из таких сталей изготавливают разнообразные слабонагруженные изделия:

  • элементы газопроводных систем;
  • арматуру для печного оборудования;
  • нагревательные детали.

Жаропрочные марки сталей могут достаточно долго сопротивляться нагрузкам в высокотемпературных условиях, сохраняя при этом свои изначально высокие механические характеристики. Их обязательно легируют вольфрамом и молибденом (каждая из присадок может содержаться в стальной композиции в количестве до семи процентов). А для измельчения зерна в некоторые аустенитные сплавы вводят в небольших количествах бор.

Обозначим часто встречающиеся марки жаростойких и жаропрочных сталей описываемого в статье класса: Х15Н35ВТР, 10Х12Н20Т3Р, 40Х18Н25С2, 1Х15Н25М6А, 20X23H13, 10X15H18B4T, 10Х16Н14В2БР, 10X18H12T, 08Х16Н9М2, 10Х15Н35ВТ, 20Х25Н20С2, 1Х15Н25М6А, 20X23H13, 10X15H18B4T, 10Х16Н14В2БР, 10X18H12T.

Аустенитные нержавеющие стали (то есть коррозионностойкие) характеризуются малым содержанием углерода (не допускается наличия свыше 0,12 процентов этого химического элемента). Никеля в них может быть от 8 до 30 %, а хрома от 12 до 18%. Любая аустенитная нержавеющая сталь проходит термическую обработку (отпуск, закалку или отжиг стали). Термообработка необходима для того, чтобы изделия из нержавейки хорошо "чувствовали" себя в разных агрессивных средах – в щелочных, газовых, жидкометаллических, кислотных при температурах от +20 градусов и больше.

Наиболее известны следующие марки аустенитных коррозионностойких сталей:

  • хромоникельмолибденовые: 03Х21Н21М4ГБ, 08Х17Н15М3Т, 08X17Н13M2T, 03X16H15M3, 10Х17Н13М3Т;
  • хромомарганцевые: 07Х21Г7AН5, 10X14AГ15, 10X14Г14H4T;
  • хромоникелевые: 08Х18Н12Б, 03Х18Н11, 08X18H10T, 06X18Н11, 12X18H10T, 08X18H10;
  • с большим содержанием кремния (от 3,8 до 6,7 %): 15Х18Н12C4Т10, 02Х8Н22С6.

Хладостойкие аустенитные композиции содержат 8–25 % никеля и 17–25 % хрома. Применяются они для криогенных аппаратов, имеют высокую стоимость производства, поэтому используются весьма ограниченно. Чаще всего встречаются криогенные стали 07Х13Н4АГ20 и 03Х20Н16АГ6, которые легируются азотом. Этот элемент вводят для того, чтобы сплав при температуре +20° имел более высокий предел текучести.

3

Наиболее распространенными считаются аустенитные хромоникелевые стали, которые имеют добавки молибдена. Их применяют тогда, когда есть риск образования щелевой либо питтинговой коррозии. Они демонстрируют высокую стойкость в восстановительных атмосферах, и делятся на два вида:

  • нестабилизированные титаном с содержанием углерода не более 0,03 %;
  • стабилизированные титаном с углеродом от 0,08 до 0,1 %.

Такие марки хромоникелевых композиций, как Х17Н13М2 и Х17Н13М3, оптимальны для конструкций, функционирующих в сернокислых средах, в уксусной десятипроцентной кислоте, в фосфорной кислоте в кипящем состоянии.

Хромоникелевые стали с добавлением ниобия или титана отличаются минимальной опасностью к образованию коррозии межкристаллитного типа. Ниобия вводят по сравнению с углеродом в 9–10 раз больше, а титана – в 4–5,5 раз больше. К сплавам с подобной возможностью относят следующие составы: 0Х18Н12Б, 0Х18Н10Т, Х18Н9Т и некоторые другие.

Увеличить коррозионную стойкость описываемых сталей также можно посредством введения в них кремния. Яркими представителями таких специальных композиций являются такие сплавы:

  • 015Х14Н19С6Б;
  • 03Х8Н22С6.

Они без преувеличения идеальны для производства химических сварных агрегатов, в которых хранится и перерабатывается азотная концентрированная кислота.

Хромомарганцевые стали типа 2Х18Н4ГЛ характеризуются высокими литейными характеристиками, поэтому их эксплуатируют на производствах, где применяются коррозионностойкие литые конструкции. Другие хромомарганцевые сплавы (например, 10Х13Г12Н2СА и 08Х12Г14Н4ЮМ) в горючих средах более стойки к коррозии, нежели хромоникелевые.

4

Жаропрочные и жаростойкие сплавы аустенитной группы подвергаются при необходимости разным видам термической обработки с целью увеличения своих свойств, а также для модификации имеющейся структуры зерна: число и принцип распределения дисперсных фаз, величина блоков и самого зерна и так далее.

Отжиг таких сталей применяется для уменьшения твердости сплавов (когда это требуется по условиям их эксплуатации) и устранения явления хрупкости. При подобной термической обработке металл нагревают до 1200–1250 градусов в течение 30–150 минут, а затем максимально быстро подвергают охлаждению. Сложные чаще всего охлаждают в масле либо на воздухе, а вот сплавы с малым количествам легирующих компонентов обычно погружают в воду.

Для сплавов типа ХН35ВТЮ и ХН70ВМТЮ рекомендуется термообработка в виде двойной закалки. Сначала выполняется первая нормализация их состава (при температуре около 1200 градусов), благодаря которой металл повышает показатель сопротивления ползучести за счет формирования твердой гомогенной фазы. А после этого осуществляется вторая нормализация с температурой не более 1100 градусов. Результатом описанной обработки является значительное увеличение пластических и жаропрочных показателей аустенитных сталей.

Аустенитная сталь повышает свою жаропрочность (а заодно и механическую прочность) в тех случаях, когда проходит двойную термообработку, заключающуюся в закалке и следующим за ней старении. Кроме того, практически все аустенитные металлы, которые относят к группе жаропрочных, искусственно старят перед эксплуатацией (то есть выполняют операцию их дисперсионного твердения).

Аустенитные жаропрочные стали применяют для изготовления клапанов двигателей, лопаток газовых турбин и других «горячих» деталей реактивных двигателей - в основном для работы при 600- 700 °С.

Все аустенитные жаропрочные стали содержат большое количество хрома и никеля, а также добавки других элементов.

Аустенитные жаропрочные стали обладают рядом общих свойств - высокой жаропрочностью и окалиностойкостью, большой пластичностью, хорошей свариваемостью, большим коэффициентом линейного расширения. Тем не менее по сравнению с перлитными и мартенситными сталями они менее технологичны: обработка давлением и резанием этих сплавов затруднена; сварной шов обладает повышенной хрупкостью; полученное вследствие перегрева крупнозернистое строение не может быть исправлено термической обработкой, так как в этих сталях отсутствует фазовая перекристаллизация. В интервале 550-600 °С эти стали часто охрупчиваются из-за выделения по границам зерна различных фаз.

Аустенитные стали могут быть разделены на две группы:

1) не упрочняемые, термической обработкой, т. е. не склонные к дисперсионному твердению (условно назовем их гомогенными, хотя на самом деле они содержат вторые фазы, но в количествах, не вызывающих сильного эффекта старения):

2) упрочняемые термической обработкой и применяемые после закалки + отпуск. Упрочнение создается благодаря выделению карбидных, карбонитридных или йнтерметаллидных фаз. Способность к старению обусловлена наличием некоторых элементов (кроме хрома и никеля) в количествах, превосходящих предел растворимости.

Хром и никель - основные легирующие компоненты этих сталей. Первый определяет окалиностойкость, а никель - устойчивость аустенита. При недостатке никеля возможно частичное образование -фазы, что ухудшает жаропрочность.

Состав наиболее важных аустенитных жаропрочных сталей приведен в табл. 67. Стали первой (гомогенной) группы применяют как жаропрочные и как нержавеющие, поэтому более подробно о них будет изложено в следующей главе, здесь же мы ограничимся данными об их окалиностойкости и жаропрочности (см. табл. 68, 69).

Продолжительная выдержка при рабочих температурах (500- 700 °С) охрупчивает сталь из-за выделения избыточных фаз по границам зерен (рис. 336) и образования так называемой -фазы (сигматизация), представляющей собой интерметаллид типа Эти превращения протекают весьма медленно.

Стали второй группы, в отличие от первой, нестабильны и склонны к упрочнению вследствие распада твердого раствора (вязкость при этом снижается).

Термическая обработка этих сталей заключается в закалке при 1050-1100°С в воде и отпуске - старении при 600-750 °С. Этот отпуск - старение вызывает повышение твердости вследствие

Таблица 67. (см. скан) Состав аустенитных жаропрочных сталей (ГОСТ 5632-72), %

Рис. 336. Микроструктура аустенитиой жаропрочной стали, а - после закалки; б - после старения при 650 °С

дисперсионного твердения: избыточные фазы при старении выделяются преимущественно по границам зерен (см. рис. 336).

Конечно, цель такой термической обработки - повышение жаропрочности; аустенитные стали второй группы обладают жаропрочностью

более высокой, чем гомогенные аустенитные стали, что объясняется тонким распределением второй фазы, однако это является преимуществом только при кратковременных сроках службы; при длительных сроках службы избыточная упрочняющая фаза скоагулирует, и тогда гомогенные сплавы могут превзойти по жаропрочности дисперсионно твердеющие.

Это видно из сопоставления данных, приведенных в табл. 68 и 69.

Таблица 68. (см. скан) Свойства некоторых аустенитных сталей (гомогенных)

Таблица 69. (см. скан) Жаропрочные свойства некоторых дисперсионно твердеющих аустенитных сталей

Кроме этих сталей более или менее широкого назначения, имеются аустенитные жаропрочные стали более узкого применения: для литых деталей высокой окалиностойкости (детали печей, например реторты), листовой обшивочный материал, подвергаемый нагреву и т. д.

Составы некоторых из этих специальных жаропрочных и окалиностойких сплавов с указанием их окалиностойкости приведены в табл. 62.

Согласно экспертным оценкам, в течение года потери металла от коррозионных явлений в различных отраслях составляют до 30% от производимого в России металлопроката. Особенно велики такие потери для деталей трубопроводов и внешних металлоконструкций. Антикоррозионная защита стальных деталей путём их окраски или нанесения поверхностного защитного покрытия не всегда эффективна. Именно поэтому спрос на специальные нержавеющие стали всегда устойчив.

Виды и классификация нержавеющих сталей

Характерная особенность всех видов нержавеющей стали – наличие в их химическом составе значительного процента хрома . Специальные требования к рассматриваемой категории сталей оговариваются сразу несколькими стандартами:

Кроме того, коррозиестойкую сталь выпускают также по нескольким отраслевым стандартам и ТУ.

Обрабатываемость

Поскольку практически весь производимый металлопрокат в дальнейшем подвергается пластическому деформированию, наиболее объективной считается классификация нержавеющих сталей по их структуре.

Различают нержавеющие стали:

  • Мартенситного класса , отличительной особенностью которых является содержание углерода в пределах 0,15…0,45%;
  • Мартенситно-ферритного класса , которые содержат углерод в количестве не более 0,15%;
  • Ферритного класса , с содержанием углерода не более 0,1…0,15% и отсутствием никеля в своём составе;
  • Аустенитного класса (они, в свою очередь, имеют ещё несколько подклассов), отличительной особенностью которых считается увеличенное содержание легирующих элементов. В частности, в такие стали дополнительно вводятся вольфрам и молибден, а иногда – ещё титан и алюминий.

Разнообразие структур предопределяет различные требования к обработке нержавеющих сталей и свойствам изготовленных из них деталей.

Стали ферритного класса

К такому типу относятся нержавеющие стали 08Х13, 08Х13Т1, 10Х13СЮ и им подобные . Отличительная особенность таких сталей — заметная потеря прочностных показателей уже при сравнительно невысоких температурах (до 300…400 0 С). Это облегчает деформируемость, поскольку во многих случаях штамповку можно проводить с холодном или полугорячем состоянии. При этом возможно получение поковок и штамповок с довольно сложной конфигурацией при относительно невысоких удельных усилиях и энергозатратах.

Особенно хорошо деформируются нержавеющие стали с пониженным процентным содержанием никеля, например 12Х13. При резке они образуют чистый срез и не налипают на рабочий инструмент. Однако листовую штамповку таких сталей можно прожить только в отожженном состоянии, поскольку при значительных степенях деформации они упрочняются, и могут, например, в процессе вытяжки без межоперационного отжига, разрушиться. Нержавеющие стали ферритного класса хорошо обрабатываются и в объёмных профилях – проволоке или прутке.

Для обеспечения высокого качества готовых изделий из нержавеющих сталей ферритного класса следуют правилу: с повышением процентного содержания углерода процент хрома должен пропорционально уменьшаться. При этих условиях обработка сталей рассматриваемой группы обычно проблем не вызывает.

Стали мартенситно-ферритного класса

В эту группу входят нержавеющие стали марок 12Х13, 14Х17Н2, 15Х12ВНМФ и т.д. Они характеризуются повышенным содержанием углерода и, следовательно, снижением общей штампуемости. Такие стали способны сохранять свою прочность до температур 500 0 С и даже более, поэтому холодная пластическая деформация проката успешна лишь для деталей простой формы. Листовые материалы из сталей рассматриваемого типа в холодном состоянии удовлетворительно поддаются вырубке и пробивке . В то же время для совершения гибки, формовки и вытяжки исходные заготовки придётся нагревать . Это не ухудшает их качества, но увеличивает себестоимость производства.

Особенностью технологии обработки нержавеющих сталей мартенситно-ферритного класса является необходимость в снижении трения при штамповке или механической обработке. Проблема решается введением дополнительных операций, которые заключаются в нанесении на поверхность исходных заготовок специальных покрытий, уменьшающих коэффициент трения при сложном формоизменении. Наиболее эффективно оксалатирование – покрытие поверхности солями щавелевой кислоты. Такое покрытие чаще применяют в технологиях объёмной штамповки.

Стали мартенситного класса

Типичные представители сталей указанной группы – 20Х12ВНМФ, 25Х13Н2, 40Х9С2 . Содержание хрома в них достигает 13…14% , что негативно сказывается на последующей обрабатываемости проката , как листового, так и профильного. Требуемых по технологии показателей штампуемости нержавеющие стали мартенситного класса достигают лишь при нагреве до температур не ниже 800 0 С. При этом нагрев заготовок ведут в печах с пониженным содержанием кислорода, либо вообще в среде инертных газов, поскольку антикоррозионная способность таких сталей сохраняется на должном уровне лишь до 750…850 0 С.

Поскольку предварительный отжиг таких сталей сокращает время нагрева в печах под последующую штамповку (без ухудшения качества поверхности металла), то к механической обработке обычно допускают прокат в ненагартованном состоянии. Увеличение процентного содержания никеля при этом благоприятно влияет на штампуемость , а увеличение процента кремния – снижает её .

Стали этого класса получили наиболее широкое распространение в промышленности и строительства.

В частности, удовлетворительная свариваемость позволяет использовать детали из нержавеющих мартенситных сталей при прокладке крупных трубопроводов. В то же время достаточные прочностные показатели обеспечивают готовым изделиям хорошую долговечность при значительных внешних нагрузках (особенно при наличии вибраций).

Стали аустенитного класса

К ним относят аустенитные (08Х17Н13М2Т, 20Х25Н20С2, 45Х14Н14В2М и т.п.) , аустенитно-ферритные (12Х21Н5Т, 20Х20Н14С2 и т.п.) , а также аустенитно-мартенситные (09Х15Н8Ю, 20Х13Н4Г9 и т.п.) стали.

Обработка таких сталей, из-за значительного содержания легирующих элементов, выполняется только в горячем состоянии. Помимо высокой прочности, которая сохраняется и при повышенных температурах, такие стали отличаются:

  • Отсутствием процессов фазовой перекристаллизации , которая положительно влияет на пластичность;
  • Низкой теплопроводностью , повышающей требования к технологии нагрева заготовок;
  • Наличием гетерогенной структуры , которая имеет существенную неоднородность;
  • Склонностью к росту зерна при нагреве , что отрицательно сказывается на пластичности:
  • Требовательностью к точному соблюдению режимов нагрева (температурные отклонения свыше 50 0 С не допускаются).

Перед предварительной проковкой заготовки проходят контроль макроструктуры, в ходе которого устанавливаются возможные дефекты структуры (неметаллические включения, пустоты, заполненные азотом, наличие хрупких составляющих в растворе аустенита и т.д.). Поэтому нержавеющие стали аустенитного класса чаще производятся по технологии электрошлакового переплава.

Горячую обработку давлением таких сталей ведут при температурах 1050…1250 0 С (с увеличением процентного содержания углерода и легирующих компонентов температура увеличивается). Обращается внимание также на предельные значения степени деформации за одну проковку, которая не должна превышать 30…50%.

Рациональные области применения и способы проверки стойкости

Для верного выбора марки такой стали необходимо знать условия, в которых будет эксплуатироваться деталь , изготовленная из неё. В частности, выбор предопределяется:

  1. Постоянным наличием коррозионно активной среды – воды при повышенной температуре от 200 0 С и выше, водносолевых растворов, водных паров и т.д.
  2. Электрохимической коррозией , которую вызывают блуждающие токи.
  3. Наличия знакопеременных нагрузок при эксплуатации изделия.
  4. Контактом со стерильными, пищевыми или химически чистыми веществами .

С ужесточением всех вышеперечисленных требований предпочтение отдают нержавеющим сталям с увеличенным процентным содержанием хрома, титана, молибдена никеля. При этом непосредственно на коррозионную стойкость влияет хром. Молибден, ванадий и никель обеспечивают механическую прочность изделия, а титан и алюминий снижают вес металлоконструкции.

При длительной эксплуатации все изделия, изготовленные из нержавеющих сталей, периодически подвергают неразрушающему контролю. В его ходе устанавливается наличие возможных точечных пятен поверхностной коррозии, а по изменению удельного электросопротивления – начало межзёренной и/или междукристаллитной коррозии.

Аустенитные стали имеют ряд особых преимуществ и могут применяться в рабочих средах, отличающихся значительной агрессивностью. Без таких сплавов не обойтись в энергетическом машиностроении, на предприятиях нефтяной и химической промышленности.

Аустенитные стали - это стали с высоким уровнем легирования, при кристаллизации образуется однофазная система, характеризуемая кристаллической гранецентрированной решеткой. Такой тип решеток не меняется даже под воздействием очень низких температур (около 200 градусов Цельсия). В отдельных случаях имеется еще одна фаза (объем в сплаве не превышает 10 процентов). Тогда решетка получится объемноцентрированной.

Описание и характеристики

Стали разделяют на две группы относительно состава их основы и содержания легирующих элементов, таких как никель и хром:

  • Композиции, в основе которых содержится железо: никель 7%, хром 15%; общее количество добавок - до 55%;
  • Никелевые и железоникелевые композиции. В первой группе содержание никеля начинается от 55% и больше, а во второй - от 65 и больше процентов железа и никеля в соотношении 1:5.

Благодаря никелю можно добиться повышенной пластичности, жаропрочности и технологичности стали, а с помощью хрома - придать требуемую коррозийность и жаростойкость. А добавление других легирующих компонентов позволит получать сплавы с уникальными свойствами. Компоненты подбирают в соответствии со служебным предназначением сплавов.

Для легирования преимущественно используют:

  • Ферритизаторы, стабилизирующие структуру аустенитов: ванадий, вольфрам, титан, кремний, ниобий, молибден.
  • Аустенизаторы, представленные азотом, углеродом и марганцем.

Все перечисленные компоненты расположены не только в избыточных фазах, но и в твердом растворе из стали.

Сплавы, устойчивые к коррозии и перепадам температур

Широкий спектр добавок позволяет создать особые стали, которые будут применены для изготовления компонентов конструкций и будут работать в криогенных, высокотемпературных и коррозионных условиях. Поэтому составы разделяют на три типа:

  • Жаропрочные и жаростойкие.
  • Стойкие к коррозии.
  • Устойчивы к воздействию низких температур.

Жаростойкие сплавы не разрушаются под влиянием химикатов в агрессивных средах, могут использоваться при температуре до +1150 градусов. Из них изготавливают:

  • Элементы газопроводов;
  • Арматуру для печей;
  • Нагревательные компоненты.

Жаропрочные марки на протяжении длительного времени могут оказывать сопротивление нагрузкам в условиях повышенных температур, не теряя высоких механических характеристик. При легировании используются молибден и вольфрам (на каждое дополнение может отводиться до 7%). Для измельчения зерен в небольших количествах применяется бор.

Аустенитные нержавеющие стали (стойкие к коррозии) характеризуются незначительным содержанием углерода (не более 0,12%), никеля (8−30%), хрома (до 18%). Проводится термическая обработка (отпуск, закалка, отжиг). Она важна для изделий из нержавейки, ведь дает возможность хорошо держаться в самых разных агрессивных средах - кислотных, газовых, щелочных, жидкометаллических при температуре 20 градусов и выше.

У хладостойких аустенитных композициях содержится 8−25% никеля и 17−25% хрома. Применяют в криогенных агрегатах, но стоимость производства существенно возрастает, потому используются очень ограниченно.

Свойства термической обработки

Жаростойкие и жаропрочные марки могут подвергаться разным типам тепловой обработки, чтобы нарастить полезные свойства и модифицировать уже имеющуюся структуру зерен. Речь идет о числе и принципе распределения дисперсных фаз, величине блоков и собственно зерен и тому подобное.

Отжиг такой стали помогает уменьшить твердость сплава (иногда это важно при эксплуатации), а также устранить излишнюю хрупкость. В процессе обработки металл нагревается до 1200 градусов на протяжении 30−150 минут, потом его необходимо как можно быстрее охладить. Сплавы со значительным количеством легирующих элементов, как правило, охлаждаются в маслах или на открытом воздухе, а более простые - в обычной воде.

Нередко проводится двойная закалка. Сначала выполняют первую нормализацию составов при температуре 1200 градусов, затем следует вторая нормализация при 1100 градусах, что позволяет значительно увеличить пластические и жаропрочные показатели.

Добиться повышения жаропрочности и механической прочности можно в процессе двойной термической обработки (закалка и старение). До эксплуатации проводится искусственное старение всех жаропрочных сплавов (то есть выполняется их дисперсионное твердение).

Е. Г. НАЗАРОВ, С. Б. МАСЛЕНКОВ
ЦНИИЧЕРМЕТ
ISSN 0026-0819. «Металловедение и термическая обработка металлов», № 3, 1970 г.

Термическая обработка воздействует на структуру (величину зерна, величину блоков, величину и количество дисперсных фаз, характер их распределения), а также формирует состояние границ зерен и направленное выделение упрочняющих фаз, что значительно повышает свойства жаропрочных материалов.

Механическая обработка как правило предшествует термической обработке, но часто применяется и после термической обработки, а также до и после нее.

Детали и полуфабрикаты подвергают термической обработке до эксплуатации, но иногда (полностью или частично) их обрабатывают в процессе эксплуатации.

Аустенитные дисперсионно-твердеющие стали и сплавы подвергают разным видам термической обработки: отжигу, закалке, отпуску (старению или дисперсионному твердению) и отпуску для снятия напряжений.

В процессе механической обработки давлением или других операций металл охрупчивается. Для устранения хрупкости и снижения твердости сплавов применяют отжиг. При отжиге сплавы нагревают до высоких температур ~1000-1250 °C (в зависимости от химического состава сплава), выдерживают от 0,5 до нескольких часов (в зависимости от массы заготовки или детали) и охлаждают с возможно большей скоростью. Для менее легированных сплавов допускается охлаждение в воде, но для высоколегированных сложных сплавов предпочтительней охлаждение на воздухе в масле и других мягкоохлаждающих cpедах, так как охлаждение в воде может привести к термическим трещинам.

Для достижения высоких прочностных свойств и жаропрочности жаропрочные стали и сплавы подвергают двойной обработке состоящей из закалки и последующего старения.

Для рассматриваемых сплавов операция закалки по своему эффекту отличается и закалки углеродистых сталей и проводится с целью растворения карбидных и интерметаллидных фаз в твердом растворе, т.е. для получения однородного твердого раствора, обладающего минимальной твёрдостью. В США и Англии закалка обычных углеродистых сталей называется «hardening», т. е. приобретение твердости; закалка же жаропрочных сплавов называется «solution treating», т. е. обработка на (твёрдый) раствор.

Для всех дисперсионно-твердеющих жаропрочных сталей и сплавов температура нагрева под закалку примерно такая же, как и температура отжига.

Выдержкой при высоких температуpax достигается растворение избыточных фаз в твердом растворе и получение зерна требуемых размеров. Величина зерна сталей и сплавов зависит от температуры награ и времени выдержки.

Часто после закалки рекомендуют проводить быстрее охлаждение - для предотвращения выделений избыточных фаз . Однако, как будет показано далее, это излишне, особенно при обработке сложных аустенитных сплавов, у которых даже при сравнительно быстром охлаждении происходит кататермическое твердение, т. е. выделение упрочняющих фаз при охлаждении с высокой температуры. Этот процесс зависит от склонности сплавов к дисперсионному твердению, поэтому необходимо остановиться на этом важном явлении.

Дисперсионное твердение или старение сталей и сплавов может быть: анатермическое, кататермическое и изотермическое. Диатермическое старение происходит в процессе нагрева стали или сплава при непрерывно повышающейся температуре, кататермическое старение происходит в пpoцеcce охлаждения стали или сплава при непрерывно снижающейся температуре . Изотермическое старение происходит при постоянной температуре

Существуют слабо, умеренно и сильно дисперсионно-твердеющие сплавы. Резкого разграничения между ними нет, однако по интенсивности процессов дисперсионного твердения легко разделить эти группы сплавов. По этому принципу впервые в работе , а после и в работе дисперсионно- твердеющие сплавы были подразделены на три группы.

Сильно дисперсионно-твердеющие стали и сплавы в основном эффективно упрочняются вследствие твердения при кататермическом старении. Эти сплавы содержат 5-7 % и более упрочняющей фазы. Дополнительное старение этих сплавов мало или почти не приводит к возрастанию твердости и прочности, например такие сплавы, как: НХ35ВТЮ (ЭИ787), ЭИ929, ЭИ867, Юдимет 700, Nin-109, Nin-115 и др. Химический состав сплавов приведен в табл. 3 и 4.

Умеренно дисперсионно-твердеющие сплавы упрочняются при кататермическом и в большей степени при изотермическом старении. Эти сплавы ХН35ВТ (ЭИ612), ЭИ612К, ХН35ВТР (ЭИ725), ЭП164, А-286, Дискалой-24 содержат 2-5 % упрочняющей фазы.

Слабо или мало дисперсионно-твердеющие сплавы упрочняются только лишь при искусственном изотермическом старении. Кататермическому старению эти стали и сплавы не подвержены и содержат небольшое количество упрочняющей фазы (до 2 %). К этой группе относятся сплавы: ЭИ813, Х25Н16Г7АР (ЭИ835), ЭИ435, Nim-75, V-480S и др.

Таким образом, нет необходимости в обеспечении быстрого охлаждения сплавов после высокотемпературного нагрева. Необходимое упрочнение сплавов той или иной группы может быть достигнуто в результате естественного кататермического или искусственного изотермического старения, или, наконец, в результате их комбинаций.

Двойная закалка. Для некоторых, особенно содержащих значительное количество упрочняющей фазы, сплавов наилучшее сочетание механических свойств получается после двойной закалки (нормализации) . Первая высокотемпературная нормализация (1170-1200 °C) обеспечивает образование гомогенного твердого раствора и сравнительно крупное зерно, способствующее наиболее высокому сопротивлению ползучести. Вторая низкотемпературная нормализация (1000-1100 °C) приводит к преимущественному выделению карбидов по границам зерен и образованию упрочняющей фазы различной дисперсности. Более крупные выделения γ’-фазы образуются при охлаждении от 1050 °C на воздухе . У многих сплавов - ХН70ВМТЮ (ЭИ617), ЭИ929, ХН35ВТЮ (ЭИ787), серия «нимоник» - после двойной нормализации с последующим старением значительно повышаются жаропрочные и пластические свойства.

Дисперсионное твердение (старение). Для получения высоких прочностных свойств почти все жаропрочные сплавы перед эксплуатацией подвергают дисперсионному твердению (выделение дисперсных фаз из твердого раствора). Состав и природа упрочняющих фаз определяют у данного сплава температурные режимы старения.

В жаропрочных сплавах на никельхромовой, железоникельхромовой и кобальтникельхромовой основах содержатся:
а) первичные карбиды (TiC, VC, ТаС, ZrC, NbC и др.), имеющие очень высокую температуру диссоциации;
б) вторичные карбиды (M 23 C 6 ; М 6 С; М 7 С 3), выделяющиеся из твердого раствора. Карбид M 23 C 6 образуется в сплавах с 5 % Сr и более;
в) основные упрочняющие интерметаллидные γ’-фазы (Ni 3 Ti, Ni 3 Al, Ni 3 Nb и др.). Вследствие тонкой дисперсности этих фаз и когерентности с твердым раствором, сплавы при их образовании приобретают максимальную жаропрочность.

Стали и сплавы с карбидным упрочнением применяются при более низких температурах, чем сплавы с интерметаллидным упрочнением. Карбиды менее дисперсны, более склонны к коагуляции и распределены в матрице сплава менее равномерно, чем γ’-фазы. Однако для достижения средней жаропрочности достаточно одного карбидного упрочнения. Карбидные фазы дополнительно упрочняют сплавы, твердеющие в результате выделения γ’-фазы.

Морфология частиц γ’-фаз и карбидов в значительной мере зависит от термической обработки и ее длительности и регулирует свойства сплавов. Длительность тепловых выдержек приводит к укрупнению размеров частиц γ’-фазы и вызывает реакции, происходящие в первую очередь по границам зерен. Для понимания процессов, протекающих в сплавах при термической обработке, и прогнозирования их свойств при длительной службе очень важно знать точный состав γ’-фазы при любой температуре и различном времени выдержки при этой температуре, а также химический состав матричного твердого раствора. Скорости превращения карбидных и интерметаллидных фаз, их реакций могут оцениваться дополнительно с помощью данных кинетики изменений твердости, физических и механических свойств. В наиболее распространенных, жаропрочных сплавах на никелевой основе, содержащих хром и кобальт, легированных алюминием, титаном и молибденом, реакции превращений можно выразить в виде уравнения: МС +γ→М 6 С +γ+γ’+МС , где М элементы: Сr, Ti, Та и другие; М’ - те же карбидообразующие элементы, что и в М . Приблизительно половина количества углерода, по данным работы , остается в карбидах МС , нами условно названных М’С ; γ’-фаза (Ni 3 M ) - соединение избытка титана, алюминия в твердом γ-растворе с никелем.

Карбиды М 6 С образуются при 980-1150 °C, тогда как карбидная реакция МС М 23 С 6 протекает при 760-980 °C. Установлено , если в сплаве содержится молибден и вольфрам в сумме >6 %, то в основном будут выделяться карбиды в форме М 23 С 6 , однако указано , что данное положение, по-видимому, неточно обосновано. Это зависит, очевидно, от содержания углерода.

Исследованиями, проведенными на сплаве В-1900, установлены реакции, протекающие в нем после термической обработки (1080 °C 4 ч , воздух+899 °C 10 ч , воздух) и в процессе длительного старения до 2400 ч при 980 °C . Они выражены уравнением:
МС + γ + γ’ → М 6 С + γ + остаток γ’.

Карбиды МС (а = 4,37 Å) богаты титаном и танталом, а карбиды М 6 С (а = 11,05 Å) богаты молибденом, никелем и кобальтом. Карбиды М 6 С наблюдаются в двух формах: глобулярной и пластинчатой. С течением времени глобули и пластинки карбидов укрупняются. Выделения γ’-фазы вначале глобулярны, потом появляется γ’-фаза в виде пластинок, со временем при высокой температуре происходит их рост, агломерация и удлинение в размерах. Одновременно выделения γ’-фазы окружают все карбиды и границы зерен в виде оболочки. Приложение напряжения значительно ускоряет процесс перехода карбидов МС в карбиды М 6 С и интерметаллидные изменения. В сплавах с более высоким содержанием хрома в основном образуются карбиды М 23 С 6 .

Скорости реакции превращения γ’-фазы больше при наложении напряжений в процессе тепловой выдержки, чем при напряжениях, предварительно полученных перед этим. Напряжения приводят к избирательным процессам выделений и превращений и способствуют утолщению границ зерен, вызывают удлинение и коалесценцию упрочняющих фаз, как было показано в работах . Укрупнение зерна способствует ускорению реакций превращений карбидных и интерметаллидных фаз, происходящих в пограничных зонах. Например, появление высокотемпературной пластинчатой фазы в сплавах обнаруживается значительно раньше в крупнозернистых сплавах.

В работе установлено образование в сплаве 15 Сr-25 Ni-3 Al-2,5 Ti интерметаллидной фазы Ni 2 -Al, Ti, наряду с γ’-фазой Ni 3 (Al, Ti). Фаза Ni 2 Al, Ti образуется в процессе старения при 700 °C и имеет вид пластин, размер которых увеличивается с течением времени выдержки. Эта фаза выделяется главным образом в областях, свободных от γ’-фазы, а также по границам зерен. Она некогерентна с твердым раствором, поэтому микропустоты перед разрушением сплава образуются в первую очередь вблизи её выделений.

Фазы Лавеса (АВ 2) - незначительно упрочняют сплавы вследствие их некогерентности с твердым раствором и термической неустойчивости. Но при наличии в структуре γ’-фазы, фазы Лавеса дают возможность, из-за свойственной им длительности инкубационного периода выделения продлевать срок службы сплавов при температурах не выше 750 °C.

Боридные фазы - типа М 3 В 2 , М 3 В, М 5 B 5 разных борсодержащих сплавах имеют сложный химический состав. Например, в данным работы , такие фазы соответствуют соединению (Мо 0,5 Cr 0,25 Ti 0,15 Ni 0,10) 3 B 2

В зависимости от наличия тех или иных фаз и состояния сплава (литой, деформированный) назначают режимы дисперсионного твердения. Температура старения не должна вызывать растворение упрочняющих фаз и коагуляцию или коалесценцию. Хотя в некоторых случаях для получения заданных свойств приходится заведомо применять высокие температуры, вызывающие коагуляцию частиц и выделение их в менее дисперсном виде. Обычно старение сплавов с карбидным упрочнением проводят при 600-800 °C, с интерметаллидным упрочнения при 700-1000 °C, в зависимости от количества и состава избыточных фаз. С увеличением количества упрочняющей фазы (суммы титана и алюминия) в сплавах повышается и температура старения (см. рис. 1). Сплавы, содержащие более 8 % (Ti+Al), только нагревают до 1050-1200 °C и охлаждают на воздухе. Такие сплавы в результате кататермического старения приобретают максимальное упрочнение (например, сплавы ЖС6-К и ЭИ857). Сплавы Rene 100 и IN-100 с 9-10,5 % (Ti+Al) подвергай старению при ~1000 °C, но это по существу вторая закалка, а не старение. По-видимому для таких сплавов это высокотемпературное старение излишне, они в еще большей степени подвержены кататермическому старе нию, и для них вполне достаточно охлаждения на воздухе с температур нормализации, как, например, показано на рисунке для сплава IN-100

Рис.1.

Режимы старения можно изменять в зависимости от требуемых свойств сплава. Существуют ступенчатые режимы старения - двойные и более сложные, но они мало приемлемы для практики. Для кратковременных сроков службы и особенно для длительных сроков применение многоступенчатых режимов старения совершенно не оправдано, так как полученные структуры в процессе сложных термических обработок неизбежно меняются в условиях длительной эксплуатации, при воздействии температуры и нагрузки. Процессы старения в сплавах продолжают протекать независимо от исходного структурного состояния. Частицы упрочняющей фазы коагулируют, коалесцируют, а неустойчивые частицы растворяются в твердом растворе, происходят повторные и неоднократные выделения новых более равновесных (на данном этапе) частиц, эти процессы происходят одновременно. В зависимости от температурных условий тот или иной процесс может преобладать. После выдержки (обычно от 4 до 16 ч ) при температурах старения сплавы охлаждают на воздухе.

Типичные режимы термической обработки для зарубежных сплавов представлены в табл. 1. и для отечественных - в табл. 2. Химические составы этих сплавов приведены в табл. 3 и 4. Следует отметить, что отжиг для этих сплавов у нас почти не применяется, да и отжиг от закалки (нормализации) очень незначительно отличается (см. табл. 1).

Таблица 1

Сплав Отжиг Обработка на твёрдый раствор Промежуточное старение Окончательное старение
Температура в °С Время в ч Температура в °С Время в ч Температура в °С Время в ч Температура в °С Время в ч
Inconel-600 1038 1/4..1/2 1120 2
Inconel-625 925..1038 1 1090..1200 1
Inconel-700 1200 2 1180 2 870 4
Inconel-718 955 1 955 1 732 8 720 8
Inconel X-750 1038..1090 1/2..3/4 1150 2 845 24 700 20
Nim-80A 1080 2 1080 2 700 16
Nim-90 1080 2 1080 2 700 16
Rene-41 1080 2 1080 2 760 16
Udimet-500 1080 4 1080 4 845 24 760 16
Udimet-700 * 1138 4 1120..1175 4 870+ 8 650+ 24
+985 4 +760 8
Waspaloy 1010 4 1080 4 845 24 760 16
Inconel-713 * 1150..1175 2 930..995 4..16
Inconel-713C * 1150..1175 2 930..995 4..16
IN-100 * 1150..1175 2 930..995 4..16
* Литые сплавы

Таблица 2

Сплав 1-я закалка 2-я закалка Окончательное старение
Температура в °С Время в ч Температура в °С Время в ч Температура в °С Время в ч
ЭИ435 980..1020 0,5
ХН77ТЮР 1080 8 700..750 16
ХН70ВМТЮ 1200 2 1050 4 800 16
ХН35ВТЮ 1180 2,5 1050 4 750..800 16
ЭИ445Р 1200 4..6 850 15..20
ЭИ893 1160 2 800 12
ЭИ929 1220 2 1050 4 850 8
ЭИ867 1220 4..10 950 8
ЭН867* 1180 6 1000 8 850 16
ЭИ661 1200 10..15 950..1050 5..8
ЖС6К 1200 4
* Промежуточное старение при 900 °С 8 ч .

Таблица 3

Марка сплава Содержание элементов в %
C Cr Co Mo Nb Ti Al Fe Другие элементы
Inconel-600 0,04 15 7
Inconel-700 0,12 15 30 3 2,2 3,2 1
Inconel-718 0,04 19 3 5 0,8 0,6 18
Inconel X-750 0,04 15 1 2,5 0,9 7
Nim-80A 0,08 20 1 2,3 1,3 3
Nim-90 0,08 20 18 2,5 1,5 3
Rene-41 0,08 19 11 10 3 1,5 2 0,005 B
Udimet-500 0,08 18 18 4 3 2,9 0,5 0,004 B
Udimet-520 0,05 19 12 6 3 2 0,5 0,005 B; 1 W
Udimet-700 0,15 15 19 5 3,5 4,5 0,5 0,05 B
Waspaloy 0,10 20 14 4 3 1,3 0,75 0,004 B; 0,06 Zr
Inconel-713 0,12 13 4,5 2 0,6 6 0,5
Inconel-713 C 0,06 12 1,5 4,5 2 0,6 6 0,3
IN-100 0,15 10 14 3 5 5,5 0,015 B; 0,06 Zr; 1,0 V
B-1900 0,10 8 10 6 1,0 6 0,015 B; 0,08 Zr; 4,5 Ta

Таблица 4

Марка сплава


C Cr Co Mo W Ti Al Fe B Другие элементы
ЭИ435 0,10 20 0,30 0,10 1
ХН77ТЮР 0,05 20 2,5 0,8 1 0,01 0,10 Ce
ХН70ВМТЮ 0,10 15 3 6 2,1 2,1 до 5 0,02 0,02 Ce; 0,3 V
ХН35ВТЮ 0,05 15 3 3 1,2 ~40 0,03 0,02 Ce
ЭИ445Р 0,05 18 4,5 4,5 2,5 1,2 1 0,01 0,02 Ce
ЭИ893 0,05 15 5 10 1,4 1,4 1 0,01 0,02 Ce
ЭИ929 0,06 10,5 15 5 6 1,7 4 0,1 Ba; 0,5 V
ЭИ867 0,06 9,5 5 10 5 4,5 0,02
ЖС6-К 0,15 11,5 4,5 4 5 2,8 5,5 1 0,02

Температура закалки за рубежом ниже и время выдержки значительно меньше (почти в 2 раза), чем температура закалки, применяющаяся в СССР. В результате этого зарубежные сплавы более мелкозернистые, чем применяемые у нас. Вторую закалку за границей не применяют, тогда как у нас она успешно применяется для многих сплавов.

Приведенные в табл. 1 и 2 типичные режимы термической обработки могут быть изменены в зависимости от требований. Известно, что сплавы с крупным зерном, получаемым при нагреве до высоких температур, имеют более высокое сопротивление ползучести, чем мелкозернистые. Крупнозернистые сплавы (2-3-й балл) имеют и значительно более высокую длительную прочность при высоких температурах. Однако, в случае умеренно высоких температур (600-700 °C) более высокой жаропрочностью обладают сплавы со средним размером зерна 4-5-го балла. Мелкозернистая структура вследствие большей поверхностной энергий разветвленных границ зерен более нестабильна, особенно при повышенных температурах эксплуатации, поэтому величина зерна жаропрочных сплавов, особенно предназначенных для длительной службы, должна соответствовать 3-4-му баллу стандартной шкалы. Такая величина зерна обычна после нагрева до 1100-1120 °C, а у сложноле гированных сплавов при 1150-1170 °C.

За рубежом большинство промышленных сплавов нагревают при этих температурах.

Для получения высоких прочностных свойств при комнатной и невысоких температурах (~550 °C) нормализацию следует проводить при 950-1050 °C и старение при более низких температурах, вследствие чего сплавы получаются мелкозернистым (5-6-й балл), упрочненные тонкодисперсными выделениями γ’-фазы.

Таким образом, выбор режима термической обработки определяется требуемыми механическими свойствами. При применении сильно дисперсионно-твердеющих сплавов для работы при температурах, превышающих температурный интервал дисперсионного твердения (например, при 900-950 °C), их подвергают только одной нормализации. При нагреве до температур эксплуатации происходит интенсивное твердение сплавов в процессе нагрева (анатермическое старение), они получают максимальное упрочнение в зоне рабочих температур и могут определенное время успешно выдерживать нагрузки. Однако такие же сплавы, предварительно состаренные, имеют меньший запас сопротивляемости температурам и нагрузкам и, следовательно, менее работоспособны. Слабо дисперсионно-твердеющие сплавы (ЭИ813, ЭИ435, Inconel-600 и др.) не подвергают старению, так как дисперсионное твердение их дает малый эффект и происходит во время эксплуатации. Для обеспечения длительной стабильности сплавов необходимо умеренное содержание упрочняющих фаз в их структуре (т. е. применение умеренно дисперсионно-твердеющих сплавов). Очень важно при этом получить равномерное и максимальное выделение тонкодисперсных интерметаллидных и карбидных фаз, что предусматривалось ступенчатыми режимами обработки. Ступенчатые режимы старения , хотя и приводят к потере прочностных свойств, но значительно повышают пластические свойства и уменьшают склонность сплавов к тепловой хрупкости. Однако проведенные позднее эксперименты показали нецелесообразность этого метода. Так, на сильно дисперсионно-твердеющем сплаве ХН35ВТЮ (ЭИ787) были проверены сложные режимы термической обработки одновременно с самым простым режимом, состоящим только из одного старения при 750 °C. Оценивалась склонность к тепловой хрупкости при выдержках до 10’000-20’000 ч и температуре 700 °C. Результаты (табл. 5) показывают, что независимо от сложности предварительного режима термической обработки сплав охрупчивается. Увеличение числа ступеней отпуска или продолжительности выдержки влияет лишь только на исходные значения ударной вязкости. В процессе старения она снижается, причем в меньшей степени после термической обработки, состоящей из одного старения.

Как было ранее указано, процессы дисперсионного выделения, коалесценции и растворения термодинамически неустойчивых частиц второй фазы происходят непрерывно. Эти процессы происходят регенеративно, цикл повторяется за циклом, поэтому сколько бы сплав ни состаривать предварительно и усложнять режимы термической обработки, он при длительной тепловой выдержке будет изменять свои свойства, охрупчиваться в результате постоянного выделения частиц упрочняющей фазы и изменения структурного состояния.

Следует остановиться на оригинальном и простом режиме термической обработки дис персионно-твердеющих горяче- или холоднодеформированных сплавов, который состоит из одинарного старения (без предварительной закалки).

Этот режим позволяет получать наилучшие прочностные свойства и пластичность в широком диапазоне температур, а также наивысшую жаропрочность и сопротивляемость усталости при температурах до 750 °С . Кроме того, этот режим обеспечивает лучшее сопротивление тепловой хрупкости и нечувствительность к надрезам. Режим обработки, состоящий только из одного старения, проверен на некоторых сплавах и успешно внедрен в производство . Сведений о применении таких режимов за границей пока не имеется.

Другое важное условие обеспечения длительной стабильности сплавов - достижение высокой термической устойчивости упрочняющих фаз. Это достигается усложнением состава упрочняющих фаз, введением в сплав элементов, которые частично входят в состав упрочняющей γ’-фазы. Наиболее эффективные упрочняющие γ’фазы - Ni 3 Al и Ni 3 Ti и их сочетание - Ni 3 (А1, Ti) могут быть усложнены: ниобием, танталом, оловом, кремнием, магнием, бериллием, рутением, молибденом и другими элементами, обеспечивающими дисперсионное твердение никелевых сплавов. Из них особый интерес представляют элементы с несколько большим атомным диаметром, например олово.

Атомные диаметры некоторых элементов, образующих с никелем фазы типа γ’, следующие:

Снятие напряжений. Для снятия напряжений и стабилизации размеров деталей часто используют отпуск. Внутренние напряжения могут возникать в результате механической обработки, сварки или в процессе эксплуатации. Готовые изделия из жаропрочных сплавов подвергают отпуску при 400-700 °C с выдержкой в зависимости от габаритов изделия; после отпуска медленное охлаждение. При более высоких температурах отпуска начинают протекать процессы старения, и для многих сплавов отпуск может быть совмещен с обычным старением, поэтому, как окончательную обработку перед эксплуатацией, целесообразно проводить старение, позволяющее полностью снимать внутренние напряжения.

Новые исследования. В США выдан патент на метод повышения твердости, прочностных характеристик, сопротивления ползучести и жаростойкости аустенитных жаропрочных сплавов на никелевой, никелькобальтовой и других основах (Патент США № 3329535 от 4.07.1967 г.). Этот метод заключается в обработке на твердый раствор с охлаждением на воздухе при приложении высокого гидростатического давления (10’000-50’000 атм ), что заметно уменьшает растворимость углерода в твердом растворе (выдержка под давлением 1-10 мин ). В результате высокого давления атомы углерода или карбиды «выжимаются» из матрицы в когерентные выделения и располагаются в форме сетки, при этом частицы когерентных фаз не выпадают, как обычно, по границам зерен. При последующем старении (650-980 °C) карбиды выделяются вокруг равномерно распределенных ячеистых образований твердого раствора.

Представляют интерес исследования, проведенные в США на сплаве Inconel-718. Упрочнение этого сплава достигается выделениями γ’-фазы на основе Ni 3 Nb, состав которой соответствует соединению Ni 3 (Nb 0,8 Ti 0,2), . Сплав Inсоnе1-718 медленно дисперсионно-твердеющий и вследствие этого высокотехнологичный и хорошо свариваемый. Он применяется для работы до 760 °C. Его высокая прочность (σ 0,2 до 120-145 кГ/мм 2 ) сочетается с хорошей коррозионной стойкостью. Обращает внимание невысокая температура нормализации 955 °C (см. табл. 1), обеспечивающая высокие значения прочности. Влияние ниобия на свойства этого сплава благотворно и эффективно. Титан также оказывает повышающее влияние на свойства сплава Inconel-718, не меньше, чем ниобий. Влияние алюминия менее существенно, вызывает небольшое повышение прочности с переменным эффектом. Кремний по влиянию подобен ниобию с небольшими отклонениями. В работе изложены результаты исследований двойных (Ni+Si) и тройных (Ni+Si+Ti) сплавов. Установлено образование β-фазы: Ni 3 S и Ni 3 (Si, Ti), в сплавах, содержащих - ~12-13 % Si и 6-10 % Si и 1-4 % Ti соответственно. Рентгеноструктурным методом установлено, что фаза Ni 3 (Si, Ti) подобна γ’-фазе Ni 3 (Al, Ti); Ni 3 Si, или β-фаза в двойных сплавах образуется в результате перитектоидной реакции при температурах ниже 1040 °C. Она обладает значительной пластичностью, как и соответствующая ей фаза Ni 3 (Si, Ti). Добавка в двойной сплав титана (~2 %) устраняет перитектоидное β-образование, и образующаяся фаза Ni 3 (Si, Ti) имеет одинаковую точку плавления, как и соединение Ni 3 Ti (1380 °C). Сплавы, содержащие кремний и титан в указанных количествах, имеют довольно высокие прочностные свойства и пластичность. Maксимальный предел прочности и текучести литых сплавов при комнатной температуре соответственно составляют: 55-57 и 25-28 кГ/мм 2 , а минимальное удлинение нахо дится в пределах 15-30 % Другие свойства этих дисперсионно-твердеющих сплавов не приводятся.

Вредные фазы. При длительной термической обработке или в процессе службы во многих жаропрочных сплавах выделяются σ-, μ- и другие фазы, которые не имеют строгого стехиометрического соотношения и являются твердыми растворами переменного состава. Эти фазы вызывают понижение пластических свойств сталей и сплавов. Образованию σ-фазы в значительной степени могут способствовать хром, вольфрам, молибден и др. Небольшие добавки кобальта (до 5 %) могут уменьшить процесс σ-образования. При этом он входит в состав упрочняющей фазы Ni 3 M и освобождает хром в твердый раствор. Содержание кобальта выше 5 % активно влияет на σ-образование, особенно при недостатке в сплаве хрома. Существуют методы расчета времени образования σ-фазы в сплавах. Это - вычисления так называемой точки N v - точки плотности электронных вакансий , однако они не всегда точны. Есть сплавы, имеющие опасную точку N v , но не образующие σ-фазу. В сплавах Ud-700, Ud-500, Ud-520, IN-713C, Rene-41 была обнаружена σ-фаза. Хотя σ-фаза понижала характеристики сплавов Ud-700 и IN-100, она мало или совсем не влияла на прочность других сплавов . Исследованиями высокопрочных литых сплавов установлено, что присутствие σ-фазы не влияет на снижение свойств .

Сплавы на никелевой основе хорошо противостоят окислению до температур 850-950 °C. При более высоких температурах (температуры нагрева под закалку) они окисляются с поверхности и по границам зерен, поэтому для термической обработки жаропрочных сплавов при высоких температурах, по данным работы , желательно иметь вакуумные или водородные печи. Охлаждение металла по окончании выдержки достигается с помощью струи инертного газа. Если окисление недопустимо, необходимо применять печи с защитной атмосферой. Нагрев в соляных ваннах нежелателен, так как хлориды ванны могут реагировать с поверхностью металла в процессе нагрева даже при температурах старения. Термические печи для проведения старения могут быть обычные с воздушной атмосферой и нагреваться газом. Разбавленная экзотермическая атмосфера сравнительно безопасна и экономична. Эндотермическая атмосфера не рекомендуется. Если недопустимо окисление, то применяют атмосферу аргона. Точность регулирования температуры при термической обработке должна быть для деформируемых сплавов в пределах 4-5 °C, для литых 8-10 °C.

Список литературы:

1. Назаров Е. Г., Латышов Ю. В. Улучшение свойств дисперсионно-твердеющих жаропрочных сталей и сплавов. М., ГООИНТИ, 1964, № 23-64-1349/26.
2. Борздыка А. М., Цейтлин В. 3. Структура и свойства жаропрочных сплавов в связи с термической обработкой НТО МАШПРОМ М., «Машиностроение», 1967.
3. Беликова Э. И., Назаров Е. Г. «МиТОМ», 1962, № 7.
4. Betterige W., Franklin А. «J. of the Institute of Metals», 1957, v. 85.
5. Беттеридж В. Смит. Жаропрочные металлические материалы. Изд-во иностр. лит., 1958.
6. Беляцкая И. С., Лившиц Б. Г. «Известия вузов. Черная металлургия», 1960, № 7.
7. Эстулин Г. В. Приложение к журналу «Сталь», 1958.
8. Лившиц Д. Е., Химушин Ф. Ф. Исследования по жаропрочным сплавам. АН СССР, 1957.
9. Danеsi W., Donachie М., Radаvich J. «TASM», 1966, v. 59.
10. Danesi W., Dоnасhie M. «J. of the Institute of Metals», 1969, v. 97.
11. Cowan T. «J. of Metals», 1968, v. 20, № 11.
12. Назаров E. Г., Приданцев M. В. «МиТОМ», 1963, № 11.
13. Назаров Е. Г. «МиТОМ», 1969, № 8.
14. Sims С. «J. of Metals», 1966, № 10.
15. Левин Е. Е., Пивник Е. М. Прогрессивные методы термической обработки высоколегированных жаропрочных сплавов. Серия «Металловедение и термическая обработка». Вып. 4. Ленинград, 1963.
16. Гуляев А. П., Устименко М. Ю, «Известия АН СССР «Металлы», 1966, № 6.
17. Ульянин Е. А. «МиТОМ», 1966, № 10.
18. Williams К. «J. of the Institute of Metals», 1969, v. Э7.
19. Murphy H., Sims C. Beltran A. «J. of Metals», 1968, v. 20, № 11.
20. Burger J., Hanink D. «Metal Progress» 1967, v. 92, № 1.
21. Wagner H., Prock J «Metal Progress», 1967, v. 91, № 3.
22. Mihalisin I., Bicber C., Grant R. «Trans, of Metallurgical Society of А1МЕ», 1968, v. 242.
23. Химушин Ф. Ф. Жаропрочные стали и сплавы. М. «Металлургия», 1969.
24. Ozel М., Nutting I. «J. Iron and Steel Institute», 1969, v. 207.

Понравилась статья? Поделитесь ей