Контакты

Проблемы и достижения современной биотехнологии. «Новые Биотехнологии»: попробовать будущее на вкус

Основные достижения и перспективы развития сельскохозяйственной биотехнологии

Биотехнологические подходы позволяют современным селекционерам выделять отдельные гены, отвечающие за желаемые признаки, и перемещать их из генома одного растения в геном другого – трансгенез.

Благодаря биотехнологии были получены растения с улучшенными питательными свойствами, устойчивые к гербицидам и со встроенной защитой против вирусов и вредителей (соя, помидоры,хлопок, папайа,). ГМ растения, используемые в животноводстве, – кукуруза, соевые бобы, канола и хлопок

С помощью генетических методов были получены также штаммы микроогранизмов (Ashbya gossypii, Pseudomonas denitrificans и др.), которые производят в десятки тысяч раз больше витаминов (С, В 3 , В 13 , и др.), чем исходные формы.

Перспективы:

1. Специалисты биотехнологий разрабатывают возможности увеличения количества белка в растениях, что позволит в будущем отказаться от мяса.

2. Для агрокомплекса ведутся разработки в направлении усовершенствования функций самозащиты растений от насекомых-вредителей, посредством выделения яда.

3. Одной из бурно развивающихся отраслей биотехнологии считается технология микробного синтеза ценных для человека веществ. Дальнейшее развитие этой отрасли повлечет за собой перераспределение ролей растениеводства и животноводства с одной стороны, и микробного синтеза - с другой, в формировании продовольственной базы человечества.

4. В основе промышленного использования достижений биотехнологии лежит техника создания рекомбинантных молекул ДНК. Конструирование нужных генов позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми свойствами.

5. В качестве источников сырья для биотехнологии все большее значение приобретают воспроизводимые ресурсы непищевых растительных материалов, отходов сельского хозяйства, которые служат дополнительным источником как кормовых веществ, так и вторичного топлива (биогаза) и органических удобрений.

6. Биодеградация (переработка) целлюлозы. Полное расщепление целлюлозы до глюкозы может решить множество проблем - получение большого количества углеводов и очистку среды от отбросов лесов и сельскохозяйственного производства. В настоящее время гены целлюлолитических ферментов уже выделены из некоторых микроорганизмов. Разрабатываются методы их переноса в дрожжи, которые могли бы сначала гидролизовать целлюлозу до глюкозы и затем превращать ее в спирт.

Новейшие достижения в области медицинской биотехнологии

В области медицинской биотехнологии были разработаны интерфероны ~ белки, способные подавлять размножение вирусов.

Производство человеческого инсулина путем использования генно-модифицированных бактерий, производство эритропоэтина (гормона, стимулирующего образование эритроцитов в костном мозге.

Стало возможным производить полимеры, заменяющие органы и ткани человека (почки, кровеносные сосуды, клапаны, аппарат сердце - легкие и т.д.).

Массовая иммунизация (вакцинация) стала самым доступным и экономически эффективным способом профилактики инфекционных болезней. Так, за 30 лет вакцинирования российских детей от кори, заболеваемость снизилась ей в 620 раз.

Разработаны методы получения антибиотиков. Открытие антибио­тиков произвело переворот в лечении инфекционных заболева­ний. Ушли в прошлое представления о неизлечимости многих бак­териальных инфекций (чума, туберкулез, сепсис, сифилис и др.).

Одно из последних достижений биотехнологической диагностики – метод биосенсоров, которые «отлавливают» связанные с болезнями молекулы и подают сигналы на датчики. Биосенсорную диагностику используют для определения глюкозы в крови больных диабетом. Предполагается, что со временем можно будет имплантировать датчики биосенсоров в кровеносные сосуды больных, чтобы более точно контролировать их потребность в инсулине.

Стало возможным не только создание «биологических реакторов», трансгенных животных, генно-модифицированных растений, но и проведение генетической паспортизации (полного исследования и анализа генотипа человека, проводимого, как правило, сразу после рождения, для определения предрасположенности к различным заболеваниям, возможную неадекватную (аллергическую) реакцию на те или иные лекарства, а также склонность к определенным видам деятельности). Генетическая паспортизация позволяет прогнозировать и уменьшать риски сердечно-сосудистых и онкологических заболеваний, исследовать и предотвращать нейродегенеративные заболевания и процессы старения и т.д.

Ученым удалось выявить гены, ответственные за проявление различных патологий и способствующие увеличению продолжительности жизни.

Появились возможности для ранней диагностики наследственных болезней и своевременной профилактики наследственной патологии.

Важнейшей областью для медицинской биотехнологии стала клеточная инженерия, в частности технология получения моноклональных антител, которые продуцируются в культуре или в организме животного гибридными лимфоидными клетками - гибридомами. Технология получения моноклональных антител оказала большое влияние на фундаментальные и прикладные исследования в области медицины и на медицинскую практику. На их основе разработаны и применяются новые системы иммунологического анализа - радиоиммунологический и иммуноферментативный анализ. Они позволяют определять в организме исчезающе малые концентрации специфических антигенов и антител.

Самой передовой технологией в диагностике заболеваний ныне считают микрочипы. Их применяют для ранней диагностики инфекционных, онко- и генетических заболеваний, аллергенов, а также при исследовании новых лекарств.


Похожая информация.


Дисциплина, изучающая способы использования организмов для решения технологических задач, - вот что такое биотехнология. А проще говоря, это наука, которая изучает живые организмы в поисках новых способов для обеспечения человеческих потребностей. Например, генная инженерия или клонирование - это новые дисциплины, которые используют с одинаковой активностью как организмы, так и новейшие компьютерные технологии.

Биотехнология: кратко

Очень часто понятие «биотехнология» путают с генной инженерией, возникшей в XX—XXI веках, а ведь биотехнология относится к более широкой специфике работы. Биотехнология специализируется на модификации растений и животных путем гибридизации и искусственного отбора для потребностей человека.

Эта дисциплина дала человечеству возможность улучшить качество пищевых продуктов, увеличить продолжительность жизни и продуктивность живых организмов - вот что такое биотехнология.

До 70-х годов прошлого века этот термин использовали исключительно в пищевой промышленности и сельском хозяйстве. И только в 1970 году ученые начали использовать термин «биотехнология» в лабораторных исследованиях, таких как выращивание живых организмов в пробирках или при создании рекомбинантных ДНК. Эта дисциплина базируется на таких науках, как генетика, биология, биохимия, эмбриология, а также на робототехнике, химических и информационных технологиях.

На основе новых научно-технологических подходов были разработаны методы биотехнологии, которые заключаются в двух основных позициях:

  • Крупномасштабном и глубинном культивировании биологических объектов в периодическом постоянном режиме.
  • Выращивании клеток и тканей в особых условиях.

Новые методы биотехнологии позволяют манипулировать генами, создавать новые организмы или менять свойства уже существующих живых клеток. Это дает возможность более обширно использовать потенциал организмов и облегчает хозяйственную деятельность человека.

История биотехнологии

Как бы это странно ни звучало, но свои истоки биотехнология берет с далекого прошлого, когда люди только начинали заниматься виноделием, хлебопечением и другими способами приготовления пищи. К примеру, биотехнологический процесс брожения, в котором активно участвовали микроорганизмы, был известен еще в древнем Вавилоне, где широко применялся.

Как науку, биотехнологию стали рассматривать только в начале XX века. Ее основоположником стал французский ученый, микробиолог Луи Пастер, а сам термин впервые ввел в обиход венгерский инженер Карл Эреки (1917 год). XX век был ознаменован бурным развитием молекулярной биологии и генетики, где активно применялись достижения химии и физики. Одним из ключевых этапов исследования стала разработка методов культивирования живых клеток. Изначально для промышленных целей начинали выращивать только грибы и бактерии, но спустя несколько десятилетий ученые могут создавать любые клетки, полностью управляя их развитием.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В это время предпринимаются первые попытки по налаживанию производства антибиотиков. Разрабатываются первые пищевые концентраты, контролируется уровень ферментов в продуктах животного и растительного происхождения. В 1940 году ученым удалось получить первый антибиотик - пенициллин. Это стало толчком к развитию промышленного производства лекарств, возникает целая отрасль фармацевтической промышленности, что представляет собой одну из ячеек современной биотехнологии.

Сегодня биотехнологии используются в пищевой промышленности, медицине, сельском хозяйстве и многих других сферах человеческой жизнедеятельности. Соответственно появилось множество новых научных направлений с приставкой «био».

Биоинженерия

На вопрос о том, что такое биотехнология, основная часть населения без сомнений ответит, что это не что иное, как генная инженерия. Отчасти это правда, но инженерия лишь часть обширной дисциплины биотехнологий.

Биоинженерия - это дисциплина, основная деятельность которой направлена на укрепление человеческого здоровья посредством объединения знаний из области инженерии, медицины, биологии и применения их на практике. Полное название этой дисциплины - биомедицинская инженерия. Главная ее специализация - решение медицинских проблем. Применение биотехнологий в медицине позволяет моделировать, разрабатывать и изучать новые субстанции, разрабатывать фармацевтические препараты и даже избавлять человека от врожденных заболеваний, что передаются по ДНК. Специалисты в этой области могут создавать приборы и оборудование для проведения новых процедур. Благодаря применению биотехнологий в медицине были разработаны искусственные суставы, кардиостимуляторы, протезы кожи, аппараты искусственного кровообращения. При помощи новых компьютерных технологий специалисты в области биоинженерии могут создавать белки с новыми свойствами при помощи компьютерного моделирования.

Биомедицина и фармакология

Развитие биотехнологий дало возможность по-новому посмотреть на медицину. Нарабатывая теоретическую базу о человеческом организме, специалисты в этой области имеют возможность использовать нанотехнологии для изменения биологических систем. Развитие биомедицины дало толчок для появления наномедицины, основная деятельность которой заключается в слежении, исправлении и конструировании живых систем на молекулярном уровне. К примеру, адресная доставка лекарств. Это не курьерская доставка от аптеки до дома, а передача препарата непосредственно к больной клетке организма.

Также развивается и биофармакология. Она изучает эффекты, которые оказывают вещества биологического или биотехнологического происхождения на организм. Исследования этой области знаний сосредоточены на изучении биофармацевтических препаратов и разработке способов для их создания. В биофармакологии лечебные средства получают из живых биологических систем или тканей организма.

Биоинформатика и бионика

Но биотехнологии - это не только учение о молекулах тканей и клеток живых организмов, это еще и применение компьютерных технологий. Таким образом, имеет место биоинформатика. Она включает в себя совокупность таких подходов, как:

  • Геномная биоинформатика. То есть методы компьютерного анализа, которые применяются в сравнительной геномике.
  • Структурная биоинформатика. Разработка компьютерных программ, которые предсказывают пространственную структуру белков.
  • Вычисление. Создание вычислительных методологий, которые могут управлять биологическими системами.

В этой дисциплине вместе с биологическими методами используются методы математики, статистических вычислений и информатики. Как в биологии используются приемы информатики и математики, так и в точных науках сегодня могут использовать учение об организации живых организмов. Как в бионике. Это прикладная наука, где в технических устройствах применяются принципы и структуры живой природы. Можно сказать, что это своеобразный симбиоз биологии и техники. Дисциплинарные подходы в бионике рассматривают с новой точки зрения как биологию, так и технику. Бионика рассматривала сходные и отличительные черты этих дисциплин. Эта дисциплина имеет три подвида - биологический, теоретический и технический. Биологическая бионика изучает процессы, которые происходят в биологических системах. Теоретическая бионика строит математические модели биосистем. А техническая бионика применяет наработки теоретической бионики для решения различных задач.

Как видно, достижения биотехнологий широко распространены в современной медицине и здравоохранении, но это лишь вершина айсберга. Как уже было сказано, биотехнология начала развиваться с того момента, как человек стал готовить себе пищу, а после широко применялась в сельском хозяйстве для выращивания новых селекционных культур и вывода новых пород домашних животных.

Клеточная инженерия

Одним из самых важных методов в биотехнологии является генная и клеточная инженерия, которые сосредоточены на создании новых клеток. С помощью этих инструментов человечество получило возможность создавать жизнеспособные клетки из совершенно разных элементов, принадлежащих различным видам. Таким образом, создается новый не существующий в природе набор генов. Генная инженерия дает возможность человеку получить желаемые качества от модифицированных клеток растений или животных.

Особенно ценятся достижения генной инженерии в сельском хозяйстве. Это позволяет выращивать растения (или животных) с улучшенными качествами, так называемые селекционные виды. Селекционная деятельность основана на отборе животных или растений с ярко выраженными благоприятными признаками. После эти организмы скрещивают и получают гибрид с требуемой комбинацией полезных признаков. Конечно, на словах все звучит просто, но получить искомый гибрид достаточно сложно. В реальности можно получить организм только с одним или несколькими полезными генами. То есть к исходному материалу добавляется лишь несколько дополнительных качеств, но даже это позволило сделать огромный шаг в развитии сельского хозяйства.

Селекция и биотехнологии дали возможность фермерам повысить урожайность, сделать плоды более крупными, вкусными, а главное, стойкими к морозам. Не обходит селекция стороной и животноводческую сферу деятельности. С каждым годом появляются новые породы домашних животных, которые могут давать больше поголовья и продуктов питания.

Достижения

В создании селекционных растений ученые выделяют три волны:

  1. Конец 80-х годов. Тогда ученые впервые начали выводить растения, устойчивые к вирусам. Для этого они брали один ген у видов, которые могли противостоять заболеваниям, «пересаживали» его в ДНК-структуру других растений и заставляли «работать».
  2. Начало 2000-х годов. В этот период начали создаваться растения с новыми потребительскими свойствами. Например, с повышенным содержанием масел, витаминов и т. д.
  3. Наши дни. В ближайшие 10 лет ученые планируют выпустить на рынок растения-вакцины, растения-лекарства и растения-биорекаткоры, которые будут производить компоненты для пластика, красителей и т. д.

Даже в животноводстве перспективы биотехнологии поражают. Уже давно создаются животные, которые имеют трансгенный ген, то есть обладают каким-либо функциональным гормоном, например гормон роста. Но это были лишь начальные эксперименты. В результате исследований были выведены трансгенные козы, которые могут вырабатывать белок, который останавливает кровотечение у больных, страдающих плохой свертываемостью крови.

В конце 90-х годов прошлого века американские ученые вплотную занялись клонированием клеток эмбрионов животных. Это позволило бы выращивать скот в пробирках, но сейчас этот метод все еще нуждается в доработке. Зато в ксенотрансплантации (пересадка органов одних видов животным другим) ученые в области прикладной биотехнологии достигли существенного прогресса. К примеру, в качестве доноров можно использовать свиней с геномом человека, тогда наблюдается минимальный риск отторжения.

Пищевая биотехнология

Как уже было упомянуто, первоначально методы биотехнологических исследований стали применять в пищевом производстве. Йогурты, закваски, пиво, вино, хлебобулочные изделия - это продукты, полученные при помощи пищевой биотехнологии. Этот сегмент исследования включает в себя процессы, направленные на изменение, улучшение или создание конкретных характеристик живых организмов, в частности бактерий. Специалисты этой области знаний занимаются разработкой новых методик по изготовлению различных продуктов питания. Ищут и улучшают механизмы и методы их приготовления.

Еда, которую человек ест каждый день, должна быть насыщена витаминами, минералами и аминокислотами. Однако по состоянию на сегодняшний день, согласно данным ООН, существует проблема обеспечения человека продуктами питания. Почти половина населения не имеет должного количества пищи, 500 миллионов голодают, четверть населения планеты питаются недостаточно качественными продуктами.

Сегодня на планете проживает 7,5 миллиарда человек, и если не принимать необходимых действий по повышению качества и количества продуктов питания, если этим не заниматься, то люди в развивающихся странах станут страдать от губительных последствий. И если можно заменить липиды, минералы, витамины, антиоксиданты продуктами пищевой биотехнологии, то заменить белок практически невозможно. Более 14 миллионов тонн белка каждый год не хватает, чтобы обеспечить потребности человечества. Но здесь на помощь приходят биотехнологии. Современное белковое производство строится на том, что искусственно формируются белковые волокна. Их пропитывают необходимыми веществами, придают форму, соответствующий цвет и запах. Этот подход дает возможность заменить практически любой белок. А вкус и вид ничем не отличаются от естественного продукта.

Клонирование

Важной областью знаний в современных биотехнологиях является клонирование. Вот уже на протяжении нескольких десятилетий ученые пытаются создать идентичных потомков, не прибегая к половому размножению. В процессе клонирования должен получиться организм, который похож на родительский не только внешне, но и генной информацией.

В природе процесс клонирования распространен среди некоторых живых организмов. Если у человека рождаются однояйцевые близнецы, то их можно считать естественными клонами.

Впервые клонирование провели в 1997 году, когда искусственно создали овцу Долли. И уже в конце ХХ века ученые стали говорить о возможности клонирования человека. Кроме того, исследовалось такое понятие, как частичное клонирование. То есть можно воссоздавать не целый организм, а его отдельные части или ткани. Если усовершенствовать этот метод, то можно получить «идеального донора». Кроме того, клонирование поможет сохранить редкие виды животных или восстановить исчезнувшие популяции.

Моральный аспект

Несмотря на то что основы биотехнологии могут оказать решающее влияние на развитие всего человечества, о таком научном подходе плохо отзывается общественность. Подавляющая часть современных религиозных деятелей (да и некоторые ученые) пытаются предостеречь биотехнологов от чрезмерного увлечения своими исследованиями. Особенно остро это касается вопросов генной инженерии, клонирования и искусственного размножения.

С одной стороны, биотехнологии представляются яркой звездой, мечтой и надеждой, которые станут реальными в новом мире. В будущем эта наука подарит человечеству множество новых возможностей. Станет возможным преодоление смертельных болезней, устранятся физические проблемы, и человек, рано или поздно, сможет достигнуть земного бессмертия. Хотя, с другой стороны, на генофонде может сказаться постоянное употребление генномодифицированных продуктов или появление людей, которых создали искусственно. Появится проблема изменения социальных структур, и, вполне вероятно, придется столкнуться с трагедией медицинского фашизма.

Вот что такое биотехнология. Наука, которая может подарить блестящие перспективы человечеству путем создания, изменения или улучшения клеток, живых организмов и систем. Она сможет подарить человеку новое тело, и мечта о вечной жизни станет реальностью. Но за это придется заплатить немалую цену.

Государственный университет управления

Институт государственного и муниципального управления

Специальность государственное и муниципальное управление

Курсовая работа

«Достижения генной инженерии и биотехнологии»

Выполнена студенткой

Дата выполнения работы 15.12.2000г.

Руководитель Миронченко В.И.

План

Введение

Строение ДНК

I Биотехнология
Возникновение биотехнологии
Специфика биотехнологии
Разделы биотехнологии
А) Биоэнергетика
Б) Биологизация и экологизация
Практические достижения биотехнологии
II Генная инженерия
Генная инженерия
Методы генной инженерии
Генетическая рекомбинация in vitro
Методы введения ДНК в бактериальные клетки
Достижения генной инженерии

Молекулярная геномика

Генная терапия
Биотехнологические и генно-инженерные компании и их разработки.
А) Компании США
Б) Компании СССР
В) Компании Западной Европы
Г) Международное сотрудничество

Заключение

Список терминов

Список литературы

Приложение 1

Приложение 2

Введение

В своей работе я раскрываю тему достижений генной инженерии и биотехнологии. Возможности, открываемые генетической инженерией перед че­ловечеством как в области фундаментальной науки, так и во мно­гих других областях, весьма велики и нередко даже революционны. Так, она позволяет осуществлять индустриальное массовое произ­водство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации - энзимов и аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека. Таким образом, генная инженерия, будучи одним из магистральных направлений научно-технического прогресса, активно способствует ускорению решения многих задач, таких, как продовольственная, сель­скохозяйственная, энергетическая, экологическая.

Еще в прошлом веке биологи изучили процесс клеточного деления, которому предшествует расхождение хромосом, благодаря чему в каждый сперматозоид и в каждую яйцеклетку попадает половина хромосом из исходной клетки. Тогда уже было показано, что носителями генетической информации являются хромосомы.

С точки зрения химиков хромосомы состоят из белка и дезоксирибонуклеиновой кислоты (ДНК). Белки - сложная группа веществ, состоящая из 20 мономерных звеньев (аминокислот), которые соеди­нены в самых разных комбинациях. В ДНК - всего четыре вида ами­нокислот. Сначала предположили, что ДНК строится сочетанием этих четырех единиц в однообразном порядке. В качестве носителей генетической информации предполагались белки, как более сложные структуры. Только в 40-с годы было установлено, что именно ДНК, несмотря на простоту своей структуры, являются носителями инфор­мации, и, более того, обеспечивают образование своих точных копий для передачи последующим поколениям.

Гены - это участки молекулы ДНК, которая "размножается" путем комплиментарного пристраивания друг к другу четырех нуклеотидов (оснований), и при ошибках в этом процессе происходят мутации. Гены управляют синтезом белков, составляю­щих протоплазму, переключаясь время от времени с построения собственных клеток на построение иных молекул. В клетках высших организмов количество ДНК сильно различает­ся, отсюда отличия между организмами и в наборе синтезируемых белков, и в сложности строения организмов.

В начале 50-х годов выяснилось, что химический состав ДНК (а не белков) у од­ного вида почти одинаков, весьма различаясь у разных видов. Любая ДНК состоит из четырех типов нуклеотидов: А, Т, Г, Ц (начальные буквы четырех азотистых оснований- аденин, тимин, гуанин и цитозин), которые присутствуют в ДНК в разных пропорциях у разных видов и имеют близкие пропорции у одного вида. В 1938 г. Уильям Астбери (автор термина молекулярная биология) получил вместе со своим сотрудником Флорином Беллом рентгено­граммы ДНК, которые показали, что азотистые основания распола­гаются одно за другим, построенные как пластинки. Вскоре амери­канский биохимик Эрвин Чаргафф (р. 1905) установил, что отно­шения А/Т и Г/Ц приблизительно равны единице. Эти результаты были важны для понимания структуры ДНК.

Интерес к ДНК как носителю генетической информации резко возрос к началу 50-х го­дов, и структура ДНК была вскоре установлена. Химики понимали, что ДНК собрана из нуклеотидов, каждый из которых имеет фосфатную группу, связанную ковалентно с пяти-углеродным сахаром. Каждый такой сахар связан с одним из четырех азотистых оснований. История открытия структуры ДНК описана американским биохимиком Джеймсом Уотсоном (р.1928) в его книге «Двойная спираль»(1968). Кембридже Уотсон познакомился с Криком, физиком, который переквалифицировался в биохимика. Из общения с химиками Уотсон узнал, что структурные формулы, которыми они пользовались далеки от совершенства. Разобравшись в структуре пуринов (А, Г) и пиримидинов (Т, Ц), Уотсон и Крик решили, что они должны быть тесно связаны между собой. Если это так, то ДНК должна состоять из двух цепей. Цепи должны закручиваться между собой так, чтобы сохранялись определенные углы между группами атомов. Так возникла двойная спи­раль, в которой пурины и пиримидины выстроены по типу ступенек лестницы: роль "перекладин" играют основания, "веревок" - сахарофосфатные остовы. Каждая перекладинка образована из двух оснований, присоединенных к двум противоположным цепям, при­чем у одного из оснований одно кольцо, у другого - два. Следовательно, это может быть А и Т или Г и Ц. Поскольку в каждой паре есть одно ос­нование с одним кольцом и одно - с двумя, величина пе­рекладин одинаковая, и остовы цепей находятся на одном расстоянии. Две цепи удерживаются вместе водородными связями между основаниями. Статья Уотсона и Крика, в которой сообщалось о расшифровке структуры ДНК, заняла всего две странички в научном журнале, но она открыла новую эпоху в раскрытии тайны жизни. В первой же публикации (1953) Крик и Уотсон отметили, что такая структура хорошо объясняет и процесс "воспроизводства" этой молекулы. При рассоединении цепей возможно присоединение новых нуклеотидов к каждой из них, тогда около каждой старой возникнет новая цепь, точно ей соответствующая. Так впервые пришли к структуре, кото­рая была способна к самовоспроизведению. Физики Крик и Уилкинс вместе с биохимиком Уотсоном стали лауреатами Нобелевской пре­мии по физиологии и медицине за 1962 год.

Исследования показали, что ДНК может существовать в двух фор­мах: А (при низкой влажности) и В (при высокой). Для обеих форм построили молекулярные модели. Из дифракционных картин воло­кон ДНК информацию получить было достаточно трудно, посколь­ку цепи ДНК расположены вдоль оси волокна беспорядочно, но была подтверждена ее спиральная структура. К настоящему времени иссле­дователи научились синтезировать в необходимом количестве и по­лучать в достаточно чистом виде короткие участки ДНК заданной последовательности.

Строение рекомбинантной ДНК.

Гибридная ДНК имеет вид кольца. Она содержит ген (или гены) и вектор. Вектор - это фрагмент ДНК, обеспечивающий размножение гибридной ДНК и синтез конечных продуктов деятельности генетической системы - белков. Большая часть векторов получена на основе фага лямбда, из плазмид, вирусов SV40, полиомы, дрожжей и др. бактерий. Синтез белков происходит в клетке-хозяине. Наиболее часто в качестве клетки-хозяина используют кишечную палочку, однако применяют и др. бактерии, дрожжи, животные или растительные клетки. Система вектор-хозяин не может быть произвольной: вектор подгоняется к клетке-хозяину. Выбор вектора зависит от видовой специфичности и целей исследования. Ключевое значение в конструировании гибридной ДНК несут два фермента. Первый - рестриктаза - рассекает молекулу ДНК на фрагменты по строго определенным местам. И второй - ДНК-лигазы - сшивают фрагменты ДНК в единое целое. Только после выделения таких ферментов создание искусственных генетических структур стало технически выполнимой задачей.

Биоинженерия – одно из перспективнейших научных направлений, при помощи которой можно создать новые органы или даже части тела для их дальнейшей пересадки живому человеку. В отдаленной перспективе биоинженерия позволит больному человеку получить новый глаз, сердце и другие жизненно необходимые органы.

Многие считают, что биоинженеры пытаются «играть в Бога», а их достижения могут быть использованы не для спасения жизней, а для совершенствования человеческого тела вопреки законам природы. Сейчас это кажется фантастикой, но последние достижения биоинженерии говорят об обратном.

Ухо

Человеческое ухо является достаточно сложным по своему строению органом. Однако биоинженерия, как оказалось, способна на многое. Так, ученым Принстонского университета во главе с доцентом Майклом МакАлпайном удалось-таки создать искусственное человеческое ухо, которое они представили в мае 2013 года. Для этого биоинженеры использовали технологию трехмерной печати, при помощи которой создали ухо из животных клеток с применением электронных приборов. Если его пересадить человеку, то он сможет улавливать ранее недоступные ему радиочастоты.

Кровеносные сосуды

Кровеносная система человека представляет собой очень сложный механизм, сбой в которой грозит диабетом, сердечно-сосудистыми и почечными заболеваниями. Но биоинженерия творит чудеса. В 2011 году специалистам компании Cytograft Tissue Engineering удалось создать искусственные кровеносные сосуды. Они были вживлены трем пациентам, страдающим почечными заболеваниями. Результаты эксперимента поразили ученых: через 8 месяцев после операции созданные при помощи биоинженерии кровеносные сосуды по-прежнему исправно работали.

Сердце

В 1980-х годах кардиохирурги совершили настоящий прорыв, пересадив человеку искусственное сердце. Конечно, живое сердце трудно заменить, но с развитием науки достижения биоинженерии позволили усовершенствовать искусственное сердце использованием биологических материалов, а специалистам Массачусетского технологического института и вовсе удалось напечатать сердце на 3D-принтере из клеток грызунов. Будем надеяться, что уже скоро достижения биоинженерии позволят «напечатать» искусственное человеческое сердце, не уступающее настоящему.

Печень

Биоинженерия уже близка к созданию искусственной человеческой печени. Так, миниатюрные образцы этого органа были созданы в 2010 году специалистами Балтийского медицинского центра при Университете Уэйк Форест с применением животных и человеческих клеток. Кроме того, в Йокогамском университете был проведен эксперимент, в результате которого были созданы «зародыши» печени. Но для создания функционирующего органа потребуются тысячи таких элементов.

Трахея

Пусть биоинженерия пока и не может дать человечеству искусственную печень, но создать трахею она в состоянии. Так, в американском штате Иллинойс 2,5-летней Ханне Уоррен была пересажена искусственно выращенная трахея. Операция прошла удачно, но 7 июля 2013 года девочка скончалась в результате сделанной ранее операции на пищевод.

Межпозвоночные диски

Даже небольшое смещение межпозвоночных дисков приводит, в лучшем случае, к сильнейшим болям в спине, а в худшем – без хирургического вмешательства не обойтись. Но в результате операции врачи просто соединяют позвонки между собой, лишая человека подвижности. В редких случаях используются искусственные диски, которые быстро изнашиваются. К счастью, и здесь биоинженерия оправдала все ожидания. В этом году специалисты Университета Дьюка создали диск, который при вживлении в междисковое пространство способен восстанавливать соответствующие ткани, фактически выращивая межпозвоночный диск в теле пациента.

Кишечник

Использование коллагена и стволовых клеток позволило биоинженерии создать небольшой искусственный кишечник. Однако для создания полноценного органа ученым еще далеко.

Почка

Почка – один из самых востребованных органов. Только в США около 60 тысяч пациентов, страдающих от почечной недостаточности, стоят в очереди на пересадку почки. Возможно, эту проблему удастся решить специалистам Калифорнийского университета. Используя последние достижения биоинженерии, они работают над созданием искусственной почки, сделанной на основе силиконовых нанофильтров и клеток человеческой почки. Уже в 2017 году ученые надеются провести испытания этого устройства.

Посетители конференции Startup Village, прошедшей на минувшей неделе в Сколково, имели уникальную возможность заглянуть в то недалекое будущее, когда человечество, вынужденное пересмотреть рацион питания, начнет получать значительную долю белков за счет насекомых

На одном из стендов на выставке стартапов расположились производители кормового протеина из личинок мух, представляющие липецкую компанию «Новые Биотехнологии». Пока корм предназначен для животных, но в будущем блюда из насекомых, как следует из многочисленных прогнозов, перестанут быть экзотикой и в человеческом меню. Попробовать продукт с исключительными питательными свойствами на Startup Village отважились пятеро смельчаков. Корреспондент сайт не рискнул последовать их примеру, но зато подробно расспросил дегустаторов, каков он, вкус еды будущего, а заодно узнал, что окруженные теплом и заботой селекционеров мухи из Липецка становятся гораздо плодовитее своих сородичей.

Алексей Истомин с продукцией "Новых Биотехнологий" на Startup Village. Фото: сайт

«Новые Биотехнологии» специализируются на производстве высокобелкового корма из высушенных и измельченных личинок зеленых мясных мух по аналогии с тем механизмом, над выработкой которого природа трудилась миллионы лет. «Животные, рыбы, птицы размножаются, питаются, оставляют после себя навоз и помет, умирают, а природа все это неустанно перерабатывает.. - Мухи откладывают на отходах яйца, из них появляются личинки, которые выделяют ферменты, ускоряющие процесс разложения и минерализации отходов. При этом личинки сами становятся кормом для животных, рыб и птиц. А оставшийся субстрат под воздействием дождей и солнца в виде органического удобрения попадает в почву и способствует бурному росту фитомассы, которая также является кормом для всего живого. Иными словами, происходит рециркуляция питательных веществ, причем безо всяких пестицидов и ядов. Только органика».

Этот природный процесс и заимствовали в компании «Новые Биотехнологии». Получившаяся в результате применения технологии биомасса, личинки мух, обладают высоким содержанием питательных веществ. На 50-70% биомасса состоит из сырого протеина, 20-30% приходятся на сырой жир, 5-7% - это сырая клетчатка.

При описании положительного эффекта применения кормового белка (коммерческое название - «Зоопротеин») в разных отраслях сельского хозяйства Алексей Истомин был весьма убедителен. «В свиноводстве применение в микродозах белково-липидного концентрата в качестве добавки в рацион поросят, свиней, хряков позволяет повысить усвояемость пищи и естественную резистентность организма болезням и вирусам, увеличить привес, активность и приплод, - перечисляет преимущества корма из личинок мух г-н Истомин. - Это происходит за счет содержания в «Зоопротеине» большого количества ферментов, хитина, меланина, иммуномодуляторов. В птицеводстве включение нашего кормового белка в состав рациона для цыплят-бройлеров, индеек, уток и другой птицы позволяет повысить ежедневный привес и снизить кормовой коэффициент. У кур-несушек наблюдается повышение яйценоскости, возрастает резистентность организма к болезням и вирусам, снижается смертность». В звероводстве добавление «Зоопротеина» в корм норок, песцов, лисиц приводит к улучшению качества меха и снижению процента брака. Животные имеют большую длину тела и обхват груди, следовательно, из них можно получить большее количество шкурок.

Слева направо: готовый корм, высушенные и живые личинки. Фото: сайт

Появление корма из мух обрадует и владельцев домашних питомцев. По словам Алексея Истомина, «у кошек и собак легче проходит течка и линька, повышается мышечный тонус и активность, шерсть становится более плотной; животные меньше болеют». Здоровее при добавлении белка из личинок мух в корм становятся и домашние птицы, их окрас становится ярче. Мальки аквариумных рыбок развиваются в два раза быстрее, причем выживаемость мальков приближается к 100%.

Чудодейственная технология возникла не на пустом месте - ее теоретические основы были заложены еще полвека назад во Всесоюзном научно-исследовательском институте животноводства, а также в Новосибирском государственном сельскохозяйственном институте. Там в лабораторных условиях всесторонне изучали кормовые добавки из личинок мух. Сейчас работы в этом направлении продолжаются Новосибирском государственном аграрном университете, ВНИИЖ им. Л.К. Эрнста, Институте проблем экологии и эволюции им. А.Н. Северцова. По словам Алексея Истомина, эффективность использования белкового корма, полученного в результате переработки отходов личинками мух, по сравнению с другими животными белками (рыбная и мясо-костная мука) подтверждена исследованиями, проведенными во Всероссийском научно-исследовательском институте животноводства и Всероссийском научно-исследовательском и технологическом институт птицеводства. Примечательно, что со временем актуальность этой технологии лишь растет, ведь мир столкнулся с острым дефицитом белков животного происхождения.

«То, что нам мешает, плохо пахнет и требует больших затрат, может помочь и работать на благо отечественного сельского хозяйства, принося дополнительную прибыль и снижая нагрузку на окружающую среду»

В компании «Новые Биотехнологии» его оценивают в 25 млн тонн; в России аналогичный показатель - 1 млн тонн. С 1961 года население Земли выросло более чем в два раза, а мировое потребление мяса - в 4 раза. По прогнозам, до 2030 года глобальное потребление животного белка увеличится на 50%. Пока в сельском хозяйстве его основными источниками являются рыба (рыбная мука) и мясо-костная мука. «Самая качественная рыбная мука производится в Марокко, Мавритании и Чили, и ее стоимость увеличивается пропорционально издержкам на логистику. Цена рыбной муки за последние 15 лет выросла в 8 раз, - делится статистикой Алексей Истомин. - Многие производители сельскохозяйственной продукции отказываются от качественной импортной рыбной муки в пользу более дешевых и менее качественных аналогов, а также переходят на мясо-костную муку или растительные белки, в частности, сою. Использование растительных белков не позволяет достичь желаемого результата - такой протеин требует большого количества земельных ресурсов и не может в полной мере заменить животный белок по составу».

Проект "Новых Биотехнологий" вызвал интерес у вице-премьера Аркадия Дворковича и губернатора Ростовской области Василия Голубева. Фото: сайт

Кроме экономических, есть и экологические предпосылки смены кормовой парадигмы. Так, для изготовления 1 тонны муки требуется выловить 5 тонн промысловой рыбы. Учитывая, что потребность в животных белках велика, вылов рыбы достиг значительных показателей (170 млн тонн в 2015-м году). Экосистема не успевает воспроизвести рыбные запасы в морях. При изготовлении одной тонны рыбной муки в атмосферу выделяется почти 11 тонн углекислого газа. Дополнительные расходы на экологию в этом случае оценивается в 3,5 тысячи долларов. При производстве одной тонны муки из личинок мух в атмосферу попадает в 5 раз меньше СО2. То есть каждая произведенная тонна белка из личинок мух сохраняет 5 тонн рыбы в море.

«Вкус необычный, не похож ни на что. Зато этот белок укрепляет иммунитет и способствует росту мышечной массы»

Задумавшись об альтернативных источниках животного белка, исследователи обратили внимание на насекомых. На планете - более 90 тысяч видов мух, и каждый из них питается определенными отходами: растительными, навозом/пометом, пищевые отходы и т.д. «То, что нам мешает, плохо пахнет и требует больших затрат, - экологических, финансовых, энергетических - может помочь и работать на благо отечественного сельского хозяйства, принося дополнительную прибыль и снижая нагрузку на окружающую среду», - говорит Алексей Истомин. По крайне мере, опытное производство компании «Новые Биотехнологии» в Липецке доказывает перспективность использования технологии в промышленных условиях.

Фарш из Люси

Известные многим металлически-зелёные яркие мухи Lucilia caesar (в компании этот вид насекомым ласково именуют Люсей) на производстве в Липецке содержатся в специальных инсектариях. Там живет несколько десятков миллионов мух. Это во многом уникальные насекомые. Чтобы улучшить их репродукционные способности, ученые более двух лет вели кропотливую селекционную работу, по определенной методике скрещивая насекомых. Если в природе одна муха делает кладку в 60 яиц, то у липецких насекомых кладка (и, следовательно, количество личинок и получившегося из них корма) - в среднем в три раза больше. Никаких генетических манипуляций над мухами специалисты «Новых Биотехнологий» не производят, речь идет о «традиционной» селекции, уверяет г-н Истомин.Показывая на затянутую мелкой сеткой клетку-садок с роящимися насекомыми на стенде, он продолжает: «Еще вчера здесь было всего 6 мух; всего за сутки их количество достигло несколько сотен. Это стало возможным благодаря правильному подбору цикла развития кукол, называемых еще пупариями. Мы подгадали цикл таким образом, чтобы сегодня их стало намного больше. Завтра их количество еще подрастет». Отчасти этот процесс сдерживался не слишком подходящей погодой: оптимальная температура для превращения куколки в муху - около 30-ти градусов. Несмотря на то, что на Startup Village по ночам насекомых заносили в помещение, температура там была ниже.

На производстве в Липецке мухам - полное раздолье. Фото: "Новые Биотехнологии".

На производстве в Липецке мухам - полное раздолье, там их оберегают и от неблагоприятных условий, и от стресса. Мухи содержатся в специальных клетках-садках, в которых есть вода, сахар, сухое молоко и боксы с мясным фаршем, где мухи делают кладки яиц. Кладки вынимают ежесуточно. Контроль качества и чистоты популяции осуществляет главный технолог. Для этого отбирают личинки, которые в специальных условиях окукливаются и в виде куколок хранятся в холодильной камере. При необходимости куколки помещают в клетки инсектария, и через некоторое время из них появляются мухи.

Как только из яиц появились личинки, их перемещают в выростной цех. В специальных лотках на подстилке из опилок размещают кормовой субстрат и кладки яиц. Личинки очень прожорливы и быстро растут, увеличиваясь в размере до 350 раз за сутки. Период откармливания и активного роста составляет 3-4 суток. Затем выросшие личинки оказываются на выгонке. Так называют процесс отделения личинок от органического субстрата. После биомассу высушивают и отправляют на хранение.

Мухи растут на мясе с птицефабрики, которая находится недалеко от опытного производства компании «Новые биотехнологии». Личинки, выращенные на мясе птицы, обладают более высокими показателями содержания питательных веществ, чем те, которые культивировались на навозе и помёте. При этом запасов мяса должно быть много - чтобы произвести 1 кг «Зоопротеина», необходимо вырастить 3,5 кг живых личинок, для чего требуется 10 кг мясных отходов.

С 1961 года население Земли выросло более чем в два раза, а мировое потребление мяса - в 4 раза. По прогнозам, до 2030 года глобальное потребление животного белка увеличится на 50%

«Среднестатистический падеж на птицефабриках составляет 5% от общего поголовья. Такой вид отходов доставляет большое количество хлопот птицеводческим хозяйствам. Это и экологические вопросы (надо утилизировать), и финансовые (за утилизацию надо платить), и организационные (собирать, хранить, доставлять, учитывать). Поэтому применение нашего метода наиболее эффективно непосредственно на птицефабрике, что позволяет делать производство птицы безотходным, - пояснил Алексей Истомин. - В целом, рост объемов сельскохозяйственного производства неминуемо влечёт за собой увеличение негативного влияния на окружающую среду. По данным Минсельхоза, в России общая площадь земель, загрязненных сельскохозяйственными отходами, превышает 2,4 млн гектаров. В 2015-м году суммарное количество таких отходов превысило 380 млн тонн. В стране практически отсутствует культура переработки отходов сельского хозяйства. Счет таким производствам идет на единицы».

Опытное производство в Липецке. Фото: "Новые Биотехнологии"

Сложность промышленного внедрения технологии обусловлена, прежде всего, административными и экологическими факторами. «За границей, в частности, в Китае и Индонезии используется бассейновый («открытый») метод, поясняет Истомин. - Он неприемлем в наших условиях, поскольку личинки в процессе жизнедеятельности вырабатывают большое количество аммиака. В нашем проекте предложен «закрытый» метод с использованием выростных шкафов для мух, оборудованных локальной вытяжной вентиляцией, микробиологическим фильтром для очистки воздуха, особыми системами приготовления сырья, инфракрасной сушки. Все это позволяет максимально выполнить требования, предъявляемые к экологической безопасности».

Личинки очень прожорливы и быстро растут, увеличиваясь в размере до 350 раз за сутки. Фото: "Новые Биотехнологии"

Сейчас компания «Новые Биотехнологии» находится в процессе получения статуса резидента «Сколково». Команда рассчитывает на помощь Фонда главным образом в сертификации продукции. В России отсутствует нормативная база, связанная с регламентацией использования технологии переработки отходов личинками мух, поэтому, рассказывает Алексей Истомин, «приходится изощряться». При этом контролирующие инстанции констатируют безопасность продукции: «Липецкая облветлаборатория» производит исследования живой биомассы на наличие сальмонелл, генома возбудителей орнитоза и гриппа у птиц, яиц и личинок гельминтов. У высушенной биомассы личинок мух определяется массовая доля сырого протеина, массовая доля сырого жира, влажность и токсичность. «Тульская межобластная ветеринарная лаборатория» проводит исследования органического удобрения зоогумуса на наличие патогенной флоры. Результаты каждого исследования оформлены протоколом».

Собеседник сайт убежден: в обозримом будущем со вкусом белка из насекомых познакомятся на только животные, но и люди. Эту точку зрения разделяет все больше специалистов. Так, три года назад Продовольственная и сельскохозяйственная организация ООН выпустила исследование, в котором говорилось, что в рационе 2 миллиардов человек в той или иной степени насекомые присутствуют уже сейчас. Чтобы справиться с голодом и загрязнением окружающей среды, человечеству следует есть больше насекомых, призвали составители отчета.

Тем более что, как свидетельствует личный опыт Алексея Истомина, это не так страшно. Вот уже несколько месяцев он добавляет столовую ложку белка из насекомых в утренний шейк из молока, банана и прочих традиционных ингредиентов. «Вкус необычный, не похож ни на что. Зато укрепляет иммунитет и способствует росту мышечной массы», - рассказывает Алексей.

Baklanov Mikhail and 8 others like this" data-format="people who like this" data-configuration="Format=%3Ca%20class%3D%27who-likes%27%3Epeople%20who%20like%20this%3C%2Fa%3E" >

Понравилась статья? Поделитесь ей