Контакты

Вентилятор для чердака на солнечной батарее. Схема, описание

Все большее количество бытовых приборов производители начинают выпускать со способностью работать в автономном режиме, когда для питания устройств используются альтернативные, возобновляемые источники энергии.
Одним из подобных приборов, являются вентиляторы, работающие на солнечной батарее.

Принцип действия

Основные элементы, входящие в комплект вентилятора, ничем не отличаются от обычного устройства, разница лишь в источнике энергии, которым служит солнечная батарея и то, что как правило, это устройство небольшой мощности, что определяется способностью солнечной батареи вырабатывать определенное количество электрической энергии.

Электрический ток, используемый для питания аппарата, получается путем преобразования солнечной энергии внутри фотоэлементов, являющихся основой солнечной батареи.

Преобразование происходит внутри пластин, которые изготавливаются из кремния. В состав фотоэлемента входит две пластины (два слоя), каждая из которых, изготавливается с добавлением различных компонентов. Так в верхнюю пластину добавляется фосфор (на схеме слой Р+), в нижнюю – бор (на схеме слой В-). К каждой из пластин, подсоединены электроды, к верхней – внешний электрод, к нижней – внутренний, на поверхность фотоэлемента наносится антибликовое покрытие.

Под воздействием солнечного света, в верхней пластине образуется избыточное количество отрицательно заряженных частиц, а в нижней – так называемых «дырок». Одновременно с этим, между слоями образуется разность потенциалов, под воздействием которой, при подключении нагрузки в цепи протекает электрический ток, обусловленный тем, что разно заряженные частицы движутся в противоположные стороны.

Отрицательно заряженные движутся вверх, положительно заряженные – вниз.

Электронные схемы, являющиеся главной составной частью любых электронных устройств, работают на создаваемом напряжении и вырабатываемом токе, что позволяет обеспечить электроснабжение подключенных к ним механизмов бытовых приборов.

Конструктивно, в зависимости от назначения и технических характеристик, вентиляторы на солнечных батареях могут быть очень различны.

Солнечная батарея может быть встроена в корпус или быть сделана выносной конструкции. Дизайн корпуса и материал, из которого он изготавливается, также выбирает производитель, в зависимости от требований, предъявляемых к конкретной модели и ее техническим параметрам.

Для теплицы

Каждый огородник знает, что бывает недостаточно просто открыть двери теплицы, для того чтобы создать необходимый микроклимат внутри ее. Для создания принудительной циркуляции воздуха внутри таких укрытий используют вентиляторы, а одним из наиболее удобных в плане эксплуатации, являются вентиляторы на солнечной батарее.

Главный плюс вентилятора с солнечной батарей, при использовании его на приусадебном участке, является то, что нет необходимости в устройстве дополнительных электрических сетей, к тому же затраты на потребленную электрическую энергии отсутствуют, что тоже немаловажно, при выращивании своих овощей и фруктов.

В качестве циркуляционных вентиляторов, в теплицах, могут быть использованы аппараты серии «ТМС» производства Тайвань, приведенные выше. Солнечная батарея, у данных моделей, встроена в корпус устройства, которое работает только в дневное время, при наличии солнечного света, в ночное время –аппарат отключен. Производительность модели составляет 0,32 м3 в минуту. Стоимость, в торговых сетях – от 3500,00 рублей.

При потребности в перемещении значительных объемов воздушных масс, используют более мощные агрегаты, в которых солнечная панель сделана выносной конструкции, что позволяет увеличит ее мощность, и соответственно мощность и производительность вентилятора.

Режим работы данного аппарата аналогичен вышеприведенному, при наличии освещения – работа, при отсутствии – режим ожидания. Производительность подобных моделей выше, стоимость – от 15000,00 рублей.

Для авто

Для автовладельцев, также выпускаются вентиляторы, способные работать от солнечной батареи. Это вентиляторы небольшой мощности, которые размещаются под лобовым стеклом автомобиля и служат для создания дополнительной циркуляции внутри салонного воздуха.

Внешний вид подобных устройств может различаться от классического вида вентилятора, до авангардных форм, присущих авторским работам разработчиков и дизайнеров.

Плюсом данного вида вентилятора является то, что можно вентилировать салон автомобиля при заглушенном двигателе, при этом не будет использоваться энергия аккумуляторной батареи автомобиля, что позволит сохранить ее заряд.

Для кепки

Интересное изобретение предложили китайские разработчики, они изготовили вентилятор для кепки, работающий на солнечной энергии.

На первый взгляд может показаться, что эта разработка, не для постоянного пользования, но в связи с относительно невысокой стоимостью и возможность создать индивидуальный микроклимат и комфорт обладателю, это изобретение уже достаточно широко используется туристами в разных странах мира.

Кепка служит для защиты от солнца, а вентилятор обеспечивает обдув, при наличии прямых солнечных лучей. Стоимость подобных изделий — от 500,00 рублей.

Как сделать своими руками

Для того, чтобы изготовить вентилятор с питанием от солнечной батареи, достаточно иметь в наличии любой вентилятор, работающий на постоянном напряжении 12,0 В (автомобильный или подобный), а также солнечную батарею небольшой мощности.

Соединив имеющиеся элементы в электрическую сеть, можно получить требуемый результат.

В качестве источника энергии можно использовать солнечные батареи других устройств имеющих USB разъемы, посредством которых можно подключить вентилятор. Это может быть: кемпинговый фонарь, солнечный светильник или прожектор, а также внешний аккумулятор.

Солнце – неистощимый источник энергии, которой человек с каждым годом находит все новое применение. Это игрушки, работающие на энергии этой звезды, зарядки на солнечных батареях, позволяющие заряжать мобильные устройства там, где нет возможности подключения к электросети, рюкзаки – бессменный атрибут людей, предпочитающих активный отдых, кепки, ремешки, фонтаны и пр. Все они, аккумулирующие солнечную энергию, разработаны, чтобы служить людям. С ними себя комфортно чувствуешь везде.

Самое страшное бедствие – ехать куда-то в жару на автомобиле. Но, выход найден – это вентилятор на солнечной батарее. Он избавил от необходимости подключать к прикуривателю громоздкие вентиляторы, потому что работает автономно, используя солнечную энергию. Прикрепив компактный вентилятор к боковому стеклу автомобиля, салон наполнится долгожданной прохладой, оставив прикуриватель для подключения видеорегистратора или зарядки мобильника.

Технология работы этого гаджета абсолютно безвредна и экологична. Схема работы до банального проста: солнечный свет, попадая на фотоэлементы, вырабатывает энергию, которая и заставляет крутиться вентилятор.

Самое интересное, что бесплатный источник энергии для этих вентиляторов не может быть испорчен.

Солнечные батареи подключены к низковольтному вентилятору, который прохладный воздушный поток пропускает сквозь небольшие заборные отверстия, выводя из автомобиля вытяжным способом (через приоткрытое окно) воздух горячий.

Прикрепить его можно в любом месте бокового стекла, отрегулировав так, чтобы он дул на задние или передние сиденья.

От механических воздействий и погодных сюрпризов он надежно защищен автомобильным стеклом. Размеры и вес у него небольшие, да и цена сильно не ударит по семейному бюджету.

Установить его можно на любую машину и ехать в знойный день наслаждаясь прохладой, да еще экономя автомобильный аккумулятор, поскольку, в отличие от того же кондиционера, он не нуждается в питании от батареи. Помимо того, что вентилятор будет охлаждать салон, он удалит из него неприятные запахи.

Понятно, что установив такой гаджет, нельзя рассчитывать на температуру, которую обеспечивает кондиционер, использующий для понижения температуры охлаждающую жидкость, находящуюся под высоким давлением, благодаря чему холодный воздух мощным вентилятором подается в салон, но и в духоте с вентилятором ездить не придется. Недостатком вентиляторов, работающих от солнечного света, является то, что в пасмурную погоду они не могут выполнять свои функции, как и при их установке на тонированные стекла. Но, производители уже работают в этом направлении: появились солнечные вентиляторы с возможностью подключения к двенадцати вольтовой розетке транспортного средства, т.е. при недостатке солнечной энергии вентилятор, чтобы начать работу, может получить от батареи авто небольшое количество энергии.

Характеристики Auto Cooler

Для вентилятора Auto Cooler цифры соответственно будут такими: 15х11х7см, 380 граммов и 110 грн. Размер солнечной панели — 5,5 х 5,5 см, длина резиновой трубки около 95 см. Корпус выполнен из высококачественного черного пластика.

Солнечные вентиляторы для автомобиля, называемые иногда солярными, способны снизить воздух в салоне до температуры, которая нормально воспринимается человеком.

Преимущества

Кроме возможности обретения желанной прохлады, солнечный вентилятор сохранит открытые для солнца поверхности машины, в первую очередь приборную панель, от появления трещин, которые неизбежно появляются, если авто длительное время пребывает под палящими лучами солнца. Как уже упоминалось, благодаря нему, автомобиль охлаждается чистой с экологической точки зрения энергией. Кроме того, он снижает нагрузку на кондиционер, разряжающий аккумуляторную батарею. Ну, а для кого пока кондиционер остается несбыточной мечтой – такой вентилятор и вовсе находка. Ведь те, кто ездит на машинах старого образца, знают не понаслышке, что в жаркие дни салон превращается настоящую сауну. Установить вентилятор просто, он безопасен для окружающих, универсален, при парковке может работать кратковременно и длительно.

Область применения автономных солнечных вентиляторов

Несмотря на то, что пока вентиляторы на солнечных батареях еще не получили широкого распространения, пользу от них переоценить трудно. Но, помочь вентиляторы могут не только автомобилистам. С их помощью, например, можно охладить целый дом. Ведь его крыша начинает нагреваться с первыми лучами солнца, постепенного воздух чердака становится все более горячим, поскольку и черепица и битум отлично притягивают тепло и сохраняют его. Из-за отсутствия циркуляции, теплый воздух не поднимается вверх. Поэтому начинает нагреваться дом. И никакая теплоизоляция не спасает от жары. Не слишком эффективен и кондиционер, который удаляет тепло из помещения, но не в состоянии справиться с огромным его количеством, скапливающимся на чердаке. К тому же он достаточно дорог.

Единственным способом остановить приток тепла с чердака является установка вытяжного вентилятора в вентиляционное отверстие на гребне крыши, который обеспечит циркуляцию воздуха. Более эффективным будет вентилятор на фотоэлементах, который обеспечит вентиляцию тогда, когда она необходима. Утром, к примеру, пока еще не нагрета крыша, нет необходимости и в вентиляции. По мере нагревания, солнечный вентилятор вращается все быстрее, вновь сбавляя обороты к вечеру.

Выпускаются также вентиляторы трюмные на солнечных батареях, предназначенные для вентилирования камбузов, трюмов, гальюнов. Они не требуют дополнительного источника питания, легко монтируются в иллюминатор, рубку и палубу. Из наиболее распространенных – вентилятор-грибок – модели 30002 и 30003, отличающихся наличием или отсутствием защитного экрана. В модели 30003 она присутствует, поэтому корпус прибора немного выше.

Он нужен, чтобы в каюте не накапливалась сырость, не застаивался воздух, и была дополнительная вентиляция в жаркий день.

Устроен прибор просто: корпус выполнен из нержавеющей стали, внутри установлена солнечная панель, питающая небольшой вентилятор. Полностью автономный вентилятор работает, когда есть свет, а когда его нет — он работу прекращает.

Многие пользуются в жаркие дни мини вентилятором, прикрепляющимся к кепке при помощи специальной клипсы. Это устройство также работает на солнечных батареях, поскольку оно автономно. Этот чудесный аксессуар по достоинству оценят, когда температура поднимается выше тридцати градусов, а от него исходит приятная прохлада. Размер его всего 48х58 мм, диаметр вентилятора 73 мм, поэтому он будет удобным и при занятиях спортом, и на рыбалке, и во время путешествий, и просто для тех, кому ежедневно приходится много передвигаться по городу.

Цена автомобильного вентилятора на солнечной батарее

Обычно стоимость вентиляторов для автомобиля, которые работают на солнечной энергии не выходит за пределы двадцати-сорока долларов . Кутить этот нужный девайс можно в любом специализированном магазине, или же заказать его доставку в магазине онлайн.

Сегодня такой светильник могут найти некоторые и у себя, возможно, он уже и не рабочий, но послужить для других целей он еще может. Изготовленным своими руками коллектором можно будет обогреть дом, гараж , сарай и любое другое помещение.

Материалы и инструменты для изготовления коллектора:
- старый светильник;
- алюминиевый скотч;
- черная матовая краска;
- ножницы по металлу;
- силикон;
- стекло;
- компьютерный вентилятор, солнечная батарея (не обязательно).

Процесс изготовления коллектора:

Шаг первый. Убираем все ненужное
В первую очередь нужно взять светильник и разобрать его. С него нужно демонтировать все, включая проводку и разъемы. Для коллектора будет нужен исключительно корпус лампы. После этого в корпусе останутся отверстия, их нужно тщательно заделать. Для этих целей проще всего использовать алюминиевый скотч. Еще под отверстия можно вырезать заплатки и затем приклеить их с помощью силикона или жидких гвоздей.




Шаг второй. Подготовка и покраска корпуса
На следующем этапе корпус нужно подготовить к покраске. Для этого его нужно тщательно очистить от грязи и старой краски. Это можно сделать с помощью наждачной бумаги или болгарки с соответствующей насадкой. После этого корпус коллектора можно красить.

Краска должна быть обязательно теплоустойчивая. В противном случае на ней при нагревании образуются пузыри, и она отпадет, так как при солнечной погоде коллектор будет нагреваться довольно сильно.


Шаг третий. Делаем отверстия
Для того чтобы в коллекторе мог циркулировать воздух, в нем нужно проделать два отверстия. Через одно в устройство будет заходить холодный воздух, а через второе будет выходить уже горячий. Чем меньше будет отверстие, тем горячее будет выходящий воздух, так как он будет дольше задерживаться в коллекторе. Но если воздух будет горячее, его объем будет меньше, как следствие эффективность отопления от этого не возрастает.

Отверстия лучше всего делать до покраски, но у автора получилось после. Для создания отверстий можно использовать ножницы по металлу. Впрочем, их можно сделать и с помощью болгарки, не будет ничего страшного, если отверстия будут квадратными, а не круглыми.


Шаг четвертый. Устанавливаем стекло
Чтобы коллектор был герметичным и мог работать, на него нужно установить стекло. Не обязательно для этих целей использовать сплошное стекло, можно использовать несколько кусков, хотя при этом будет больше стыков. Стекло устанавливается на силикон, что обеспечивает отличную герметичность. Все стыки нужно тщательно проработать силиконом, иначе эффективность коллектора будет низкой.


Вот и все, теперь коллектор готов. К выходному отверстию можно подключить трубу и завести ее в помещение, которое нужно обогревать. Чтобы повысить эффективность коллектора, на одно из отверстий можно установить небольшой вентилятор от компьютера. Чтобы такой вентилятор мог работать автономно, его можно подключить к солнечной батарее. В итоге пропеллер сам будет отключаться вечером, так как солнце больше не будет питать солнечную батарею.

Помимо этого металлический корпус коллектора с наружной стороны желательно утеплить, так как металл будет охлаждаться, и эффективность коллектора будет падать.




Тестирование коллектора показало вот такие результаты:

10:00 часов - 46 °C
- 11:00 часов - 58,5 °С
- 12:00 часов - 63,1 °С
- 13:00 часов - 65,9 °С
- 14:00 часов - 62,4 °С
- 15:00 часов - 54,3 °С
- 16:00 часов - 35,0 °С

Таких цифр удалось достичь притом, что снаружи температура не поднималась выше +15 градусов. И это все без использования вентилятора, то есть воздух циркулировал естественным образом. Конечно, если вентилятор будет слишком быстро работать, то коллектор может не успевать прогреваться до такой температуры, но эту проблему можно решить, изготовив несколько таких устройств и соединив их между собой. Такие устройства можно установить на крыше или любом другом месте, где есть солнце, а потом с помощью труб завести тепло в помещение.

Кстати, если лампы в наличии нет, то можно использовать старое корыто, оно отлично подойдет как по форме, так и по размерам.

Альтернативная «чистая» энергетика, за которой, несомненно, будущее, в некоторых случаях может быть естественным и практичным выбором уже сейчас. В первую очередь, в тех случаях, когда необходимо обеспечить электричеством маломощного потребителя, расположенного «в чистом поле». А частный дом, если всё выбрано и построено с учетом требований энергосбережения (и вы, например, не планируете использовать электричество для обогрева), как раз и является примером такого «маломощного» потребителя. Да, в отличие от квартиры, тут добавляются еще и, как правило, скважинные насосы для автономного водоснабжения и различная садовая техника, но задавшись целью, вполне реально запитать это всё от солнечной системы, дополненной ветрогенератором и для подстраховки - каким-нибудь газовым или дизельным генератором. Причем последний будет включаться крайне редко, если всё рассчитано верно.

И это может быть дешевле, чем подключаться к линии электропередач в индивидуальном порядке. Поэтому в российских условиях, наверное, отсутствие «коллективного» электроснабжения является самой частой причиной интереса к альтернативным источникам питания. Но на мой взгляд, есть, как минимум, еще один довод в пользу «зеленых» систем, причем именно солнечных, даже при наличии «общественных» 220 вольт.

Дело в том, что стабильность питания, даже в Подмосковье, за пределами городов может оставлять желать лучшего. И в случае моего дачного поселка узким местом является петляющая по соседним лесам от деревни к деревне высоковольтная линия. Деревья, увы, падают от ветра, и это обстоятельство неведомо, похоже, только тем, кто считает нормальным прокладку воздушных линий в просеках шириной от силы метров десять. Впрочем, может быть, прокладка кабеля в земле дороже, чем периодическая замена столбов, пострадавших от соседней сосны. И это всё мудро просчитано.

Хотелось бы верить, но никак не получается, потому что тут насквозь видна российская традиция: сначала сделать кое-как, но подешевле, а потом тратить время и ресурсы на латание дыр (и искренне удивляться: а почему на новое денег не хватает?). Соответственно, сделать подороже и получше «сначала», чтобы экономить «потом» - гораздо проще в частном порядке.

И поскольку примерно раз в сезон бывает «хорошая» гроза, после которой на подъем линии уходит неделя, а то и больше, не считая более кратковременных отключений, сильно захотелось получить собственный запас автономии. В идеале - такой, чтобы вообще не замечать всё это безобразие. Дизельный или бензиновый вариант практически сразу отпал, мы даже купили такой. Но желание гонять это воющее и воняющее чудо техники, приехав насладиться общением с природой, оказалось ниже, чем собственно потребность в электричестве. Лучше обойтись свечами или уехать в город. Соответственно, эта тема приобрела актуальность, когда захотелось поселиться в доме на более или менее постоянной основе.

Между тем, особенность летнего дома в том, что массовая активность там происходит летом, когда солнечной энергии, даже на широте Москвы, хоть отбавляй. Собственно, и деревья-то падают в основном летом. Так обычно и было: гроза прошла, солнце сияет, а электричества нет. А интерес к «солнечной» энергетике уже был подкреплен покупкой солнечного коллектора для подогрева воды. В частности, достаточно компактный (12 трубок по 1,8 м) уверенно справляется с задачей продления «купального сезона» в 12-кубовом бассейне примерно на месяц по сравнению с естественным нагревом.

Поэтому примерно год назад была собрана система, о которой я хочу рассказать. Специально уделил внимание предыстории, чтобы не вступать в дискуссии на тему выгодности солнечных систем по сравнению с традиционными. Иногда, как мы видим, аргументы есть и помимо стоимости киловатта.

Переходим к выбору компонентов для солнечных систем.

Солнечные панели

Итак, начнем с солнечных батарей. В порядке снижения эффективности и стоимости следуют батареи на основе монокристаллического, поликристаллического и аморфного кремния. Абсолютное большинство брендовых батарей относятся к первому типу, который и сам по себе считается наиболее долговечным, ячейки деградируют медленнее всего.

Между прочим, если дом небольшой, и у вас нет какого-нибудь удобно расположенного сарая с большим южным скатом, то на практике может оказаться, что места для батарей вовсе не так много. И есть смысл взять модель с самым большим КПД на единицу площади, если вы действительно хотите построить систему с достаточно высокой энергоотдачей. Поскольку размещать батареи необходимо именно на южном скате крыши, желательно под углом 45 градусов.

По способу монтажа есть батареи, монтируемые в крышу на манер мансардных окон (фактически только у фирмы Roto с совершенно невменяемой стоимостью). А остальное большинство представляет собой простые панели, встроенные в алюминиевую раму, которые крепятся к накладным рейлингам. Минус последних в том, что крышу приходится сверлить, и не всякое покрытие выдержит без протечек такое грубое вмешательство. Тем не менее, это единственный ходовой вариант, который и был выбран.

Что касается самих батарей, то неплохим вариантом по соотношению цены и качества оказались зеленоградские монокристаллические батареи. Все же их достаточно охотно покупают в Германии. Поэтому, находясь в России, логично и даже приятно иметь возможность воспользоваться хоть чем-то имеющим отношение к электронике, но местного производства.

Были приобретены три батареи (TCM-170B) мощностью по 170 Вт и размером 158×82 см. Расчет в данном случае был простой: получить достаточный зарядный ток в облачную погоду, а также утром и вечером, чтобы энергетический баланс, по минимуму, позволял работать холодильнику сколь угодно долго. Поскольку потребление холодильника - порядка 100-200 Вт, и работает он с перерывами, такая нагрузка описанному варианту вполне по силам - разумеется, при наличии буферных аккумуляторов.

В реальных условиях, когда солнце все же светит, а люди в доме живут, энергии должно хватать и на то, чтобы пользоваться бытовыми приборами, подкачивать воду и т. д. даже при длительном отсутствии внешнего электроснабжения. Без излишеств, но и без специального режима экономии. Во всяком случае, я так рассчитывал, и сейчас уже могу подтвердить, что расчет оправдался.

Солнечный контроллер

Стандартное напряжение солнечных панелей и напряжение, которое необходимо поддерживать для заряда аккумуляторов, не совпадает. Вернее, напряжение на выходе солнечной панели меняется от нуля до максимального в зависимости от освещенности, и без промежуточного преобразования тут не обойтись.

В самом простом случае нужен контроллер, который бы отключал аккумуляторы, когда их заряд достиг максимального, и подключал обратно, когда, во-первых, требуется подзарядка, и, во-вторых, выходное напряжение массива солнечных батарей соответствует требуемому для нормального заряда. Но это очень неэффективный метод.

Поэтому в современных недорогих контроллерах используется ШИМ-модуляция, которая позволяет получить приемлемое напряжение и ток для заряда в большем входном диапазоне. Недостаток тут в том, что все равно надо хотя бы примерно совместить выходное напряжение массива солнечных панелей с напряжением массива аккумуляторов.

Наконец, самый универсальный и эффективный метод предлагают MPPT-контроллеры, которые способны преобразовывать напряжение в гораздо большем диапазоне и во время работы отслеживают точку максимальной мощности, а соответственно, позволяют снять максимум энергии и обеспечивать зарядку ранним утром и до сумерек. В моем случае вариант с таким контроллером был единственно адекватным, поскольку три солнечные батареи, как их ни соединяй, давали нестандартное напряжение. Ну а с таким контроллером - можно соединять последовательно, что и удобнее (меньше проводов), и меньше потери при передаче, поскольку та же мощность передается при максимальном напряжении и, значит, меньшем токе. А это тоже важно, если дом высокий, и от солнечных батарей до остальной электроники и аккумуляторов будет метров десять кабеля, а то и больше.

Пожалуй, самые известные и популярные MPPT-контроллеры - производства MorningStar. Выбранная модель TriStar-MPPT-45 рассчитана на зарядный ток 45 А, что безусловно избыточно (но маломощных MPPT-контроллеров практически не найти, и к тому же требования NEC подразумевают запас в 25% по току, то есть реально допустимый ток получается не выше 36 А, и, грубо говоря, заряжать таким контроллером можно батарею аккумуляторов в пределах 360 А·ч). Напряжение батареи аккумуляторов можно произвольно выбирать из ряда: 12, 24, 48 и 36 В. И наконец, входное напряжение от солнечных панелей должно быть в пределах 150 В. Разумеется, при таких характеристиках сопряжение не составляет ни малейшей проблемы.

Инвертер + зарядное устройство

Соединив батареи с аккумуляторами, логично подумать и о второй половине цепи, то есть нам необходима возможность питать от аккумуляторов внешнюю сеть, а также заряжать их от этой самой сети.

В самом общем случае нужен инвертер, зарядное устройство и реле, которое бы переключало нагрузку при исчезновении входного напряжения. К счастью, есть модели инвертеров, где все эти функции объединены, что важно, если мы хотим добиться полностью автономной и необслуживаемой работы - поскольку отдельные инвертеры зачастую требуют перезапуска вручную после того, как они исчерпали ресурс батареи и отключились, и т. д.

Собственно, на алгоритм работы надо обращать внимание и при выборе универсального устройства. Важно, чтобы оно автоматически начинало заряд аккумуляторов после появления напряжения в сети. Также важно, чтобы напряжение отключения нагрузки для инвертера было выставлено выше напряжения отключения солнечного контроллера. В таком случае аккумуляторы начнут заряжаться сразу: либо как «дадут ток», либо когда наступит утро. Даже если под вечер аккумуляторы сядут.

Поскольку качественные модели инвертеров обычно имеют 2-3-кратный запас по пусковому току, и это не аварийный, а именно штатный режим работы, вполне корректно выбрать номинальную мощность в соответствии с реальным максимумом, который вам может потребоваться. Для этого обычно достаточно сложить мощность скважинного насоса в установившемся режиме работы и мощность компрессора холодильника и добавить 20-30% запаса на «лампочки» и прочую бытовую мелочевку, которую вы соберетесь подключить к резервной линии.

Да, разумеется, предполагается, что резервная линия прокладывается отдельным кабелем, и розетки имеет смысл обозначить так, чтобы в них не оказался случайно включенным какой-нибудь утюг. Вообще, «поработать» над тем, чтобы одновременная нагрузка была как можно меньше, имеет смысл в первую очередь ради ресурса аккумуляторов. Как известно, если разрядный ток превышает оптимальный для аккумулятора, его реальная емкость может оказаться существенно меньше заявленной. А это не в наших интересах.

В моем случае получилось 700+200 В·А «надо точно». А с учетом того, что насос со временем может потребоваться и помощнее, для резервной линии было оптимально выбрать модель мощностью в пределах 1500 В·А.

После очень непродолжительного раздумья я выбрал Outback GFX1424E. Эта модель безусловно дороговата для своей мощности в 1400 В·А. Но, как я уже отметил, гоняться за мощностью в случае с инвертерами для домашней резервной линии бессмысленно. Вряд ли кто будет ставить соответствующую батарею аккумуляторов, чтобы реально иметь возможность нагрузить их 2-3 киловаттами нагрузки. Гораздо интереснее в данном случае заплатить за дополнительные функции и, конечно же, качество.

Последнее особенно важно, учитывая, что устройству предстоит работать круглосуточно и в отдельном помещении без присмотра. Что именно привлекло в этом устройстве:

  • Произведен в США. Так сложилось, что как синоним надежности техники чаще всего употребляется фраза «немецкое качество». Между тем, американская продукция зачастую еще и покрепче и служит подольше, поскольку технологический уровень страны, как минимум, не уступает, но при этом нет такой жесткой экономии на материалах, как в Европе.
  • Герметичный корпус. Соответственно, прибор защищен от пыли, влаги и насекомых. Нет, в доме, безусловно, чисто, но в комнатах ставить стойку с электротехникой вряд ли разумно - лучше для этого подходит гараж или подвал. И устройство обычной компоновки с вентиляционными решетками обязательно насосет своим вентилятором пыли - пусть не сразу, но через год-два точно. Не исключено, что какой-нибудь паук устроит аварийную ситуацию еще раньше:)
  • Низкий уровень шума. Инвертер не совсем бесшумный: высокочастотный писк в некоторых режимах есть, а также, несмотря на герметичный корпус, играющий роль радиатора, внутри есть и тихоходный вентилятор, который иногда включается и перегоняет воздух от более нагретых компонентов к радиатору. Но даже при максимальной нагрузке (то есть собственно в режиме резервирования) шум не превышает 40 дБА, а в дежурном режиме, когда идет зарядка батарей, а окружающая температура превышает 25 градусов - не более 35 дБА. Это очень мало, большинство настольных компьютеров во время работы шумят громче, ну а классические инвертеры с вентиляторами - заведомо более шумные.
  • Низкая потребляемая мощность (18 Вт в простое, 6 Вт в режиме StandBy). Тут надо иметь в виду, что воспользоваться спящим режимом вы сможете, если в доме нет маломощных потребителей энергии, нуждающихся в постоянном питании. Самый распространенный пример такого потребителя - система охраны (сигнализация).
  • Чистая синусоида. Формально, даже чувствительные к форме питающего напряжения приборы способны в большинстве своем терпеть аппроксимированную синусоиду. Во всяком случае, когда речь идет о двигателях - с учетом того, что в режиме резервного питания они будут работать лишь незначительную часть времени. Но, безусловно, корректная форма синуса - это та функция, за которую стоит доплатить. Вернее, тут соображения идут от обратного: инвертеры с аппроксимацией занимают на рынке самый нижний (начальный) сегмент, и у них много недостатков чисто конструктивного свойства, помимо собственно формы напряжения. Всерьез и надолго на такие изделия рассчитывать наивно.
  • Ну а самая любопытная функция, которая окончательно склонила выбор в пользу этого устройства - возможность экспорта электроэнергии. Иными словами, когда аккумуляторы заряжены полностью, включается инвертер, и излишек энергии, поступающий от солнечных панелей (или других альтернативных источников, подключенных к низковольтному контуру цепи, параллельно батареям), отправляется во внешнюю цепь. Соответственно, сначала компенсируется внутренний расход, а если остается еще и для соседей, то можно понаблюдать, как счетчик крутится в обратную сторону. Это, конечно, приятно, потому что только ради резервирования собирать такую систему не очень интересно (всё же бо́льшую часть времени внешняя сеть исправна). Но почему бы не пользоваться своей энергией?

Надо добавить, что даже сблокированные с зарядным устройством инвертеры далеко не все имеют функцию экспорта. А если собирать систему из отдельных компонентов, придется докупать еще дополнительный контроллер и, возможно, повозиться с программированием и настройкой. Тут уже смысл в такой обвязке есть лишь при условии, что вы собрали достаточно серьезную альтернативную электростанцию.

В данном случае я тоже не совсем был уверен, что всё получится автоматически. Всё же солнечный контроллер взят другого производителя, и оба устройства предусматривают программирование (к инвертеру прилагается отдельная панелька, а солнечный контроллер подключается через COM-порт). И как раз есть возможность выбора пороговых напряжений для заряда аккумуляторов и режима экспорта.

Однако поскольку сборка всей системы затянулась за полночь, я отложил настройку и программирование до утра. А утром обнаружилось, что заряд аккумуляторов уже закончился, и поскольку в доме ничего серьезного в этот момент включено не было, счетчик действительно крутился в обратную сторону. Всё заработало как следует.

Про замеры, какие удалось сделать, я еще расскажу в конце; добавлю только, что возможность экспорта протестирована при использовании электромеханического счетчика, который легко отличить по вращающемуся диску. Электронные могут этот момент не отрабатывать как следует, то есть ток вы отдавать будете, но исключительно в благотворительных целях. А пока осталось несколько слов сказать о выборе аккумуляторов.

Аккумуляторы

Для построения домашних систем автономного энергоснабжения, как правило, используются свинцово-кислотные аккумуляторы закрытого типа. Так называемые VRLA - Valve Regulated Lead-Acid, то есть с клапанным регулированием выделяемых газов. Существуют два типа таких аккумуляторов: AGM (Absorbed Glass Mat), в которых электролит между пластинами находится в стеклопластиковых капсулах, и гелевые. В последнем случае в электролит добавляются загустители, и при производстве аккумулятора этот электролит намазывается на пластины.

И если в компактных источниках бесперебойного питания чаще используются гелевые аккумуляторы, то для систем большой емкости в настоящее время самыми популярными являются AGM-модели, которые и были выбраны.

Поскольку бюджет был отнюдь не резиновый, были взяты два аккумулятора бюджетного производителя Leoch DJM12-200 емкостью 200 А·ч каждый.

Такой большой запас необходим для того, чтобы кратковременная нагрузка высокой мощности (насос) создавала, тем не менее, ток в пределах благоприятного режима для аккумуляторов. Как мы видим на диаграмме, для того чтобы время резервирования действительно составляло часы, а не минуты, желательно, чтобы ток в низковольтной цепи не превышал 0,2C (то есть пятую часть емкости). Аккумуляторы были соединены последовательно, поскольку инвертер был выбран с поддержкой 24-вольтовой цепи, и это также благоприятно для снижения потерь в соединениях.

Соединяем в систему

Здесь все достаточно тривиально: общее правило - минимизировать длину низковольтных цепей. Поэтому инвертер, солнечный контроллер и аккумуляторы лучше разместить на одной стойке либо просто рядом.

В моем случае получилось вот так. Провода от солнечных батарей, соединенных последовательно, подключены к солнечному контроллеру (провода имеет смысл взять потолще - от 6 мм², а лучше 10, если дом высокий, а электронику вы собираетесь поместить в подвале). Выход солнечного контроллера, как и выход инвертера, подключены к аккумуляторам, соединенным, в свою очередь, последовательно. В цепь аккумуляторов также необходимо поставить специальный автомат постоянного тока для защиты инвертера и для удобства отключения системы, если это потребуется.

В качестве шин для положительного и отрицательного полюса оказалось удобнее всего использовать выходы инвертера. Сюда же можно подцепить и ветрогенератор и все остальные источники энергии, если увлечение альтернативной энергетикой перейдет в хроническую стадию болезни. Как уже отмечалось, балласт не потребуется и аккумуляторы не перезарядятся - инвертер просто будет отдавать избыточную электроэнергию во внешнюю сеть.

Несколько тестов

В первую очередь надо отметить, что поставленная цель - не замечать кратковременные отключения (на несколько часов) и не особенно менять свои планы на день из-за упомянутой ночной грозы - достигнута полностью. Было и длительное отключение (в пределах недели), когда мы были в отъезде, и раньше бы, несомненно, по возвращении обнаружили разморозившийся холодильник, в морозилке которого всякий уважающий себя дачник хранит часть собираемого урожая. И если бы в цепи не было солнечных батарей, то, разумеется, такой результат не мог бы быть достигнут.

Итого 4,5 кВт. Поскольку в доме в это время работали только холодильник, ноутбук и освещение (энергосберегающими лампами, вечером), а также в пределах 30-40 минут в день работал скважинный насос, общее потребление составило 7,2 кВт. То есть, действительно, почти половину расхода, даже с учетом не самых благоприятных погодных условий, солнечные батареи скомпенсировали.

Хотя, подчеркну, это «побочный эффект», цели сэкономить на электричестве в данном случае не ставилось. Что касается именно вопросов экономии, то если присматриваться к альтернативной энергетике с этой точки зрения, в первую очередь имеет смысл перевести самую затратную статью - нагрев воды - с электричества на некий прямой источник тепла. То есть если уж говорить об экономии и привязывать ее к использованию энергии солнца, лучше начать с простого солнечного коллектора. И если опыт вам понравится, тогда наверняка захочется попробовать еще какой-нибудь источник альтернативной энергии. Поскольку занятие это заразное и увлекательное.

Дополнение (к обсуждению на форуме)

В первую очередь, надо добавить, что никакой опасности "для электриков" устройство в режиме экспорта мощности не представляет. Как нетрудно догадаться, выдача мощности в сеть прекращается при отсутствии внешнего напряжения (а вернее даже - после его снижения относительно запрограммированного пользователем минимального порога). В таком случае инвертер переходит в режим автономной работы и под напряжением остается только резервная линия, и соответственно, только то оборудование, которое вы к ней подключите. За год эксплуатации было довольно много отключений, и к корректности отработки этого состояния, к инвертору претензий нет.

Сами батареи не более нуждаются в обслуживании, чем обычные оконные стекла. Иными словами, если у вас мансардное окно явно своим видом указывает на необходимость мойки, не забудьте протереть и панели. В случае экологически чистого расположения вдали от трасс, по опыту, уборка требуется не чаще раза в год. В конце весны после цветения деревьев. Но в этом году, например, из-за обильных осадков, даже окна мыть не пришлось. Все же, в отличие от вертикальных стекол, наклонные хорошо очищаются дождем. Зимуют батареи у большинства пользователей, которых мне удалось опросить через одну из компаний установщиков таких систем, под снегом, проблем также нет. Хотя, разумеется, если вы планируете снимать напряжение и зимой, то размещать батареи лучше под большим углом или на каком-то поворотном кронштейне, чтобы снег не задерживался.

При выборе инвертора настоятельно рекомендую смотреть спецификации по стартовым токам, они у хороших моделей в несколько раз превосходят штатную мощность. Соответственно, не стоит доверять "ощущениям" или советам тех, кто хочет вам продать оборудование "с запасом". Запас необходим, но рассчитывать его необходимо не по "ощущениям", а по измерениям.

Кстати, буквально на днях сильная гроза опять "удивила" незадачливых подмосковных энергетиков падением сосен. И электричества не было примерно сутки. И как всегда на следующее утро ярко светило солнце, выполняя свою полезную работу.

Самый простой способ охладить дом — установить в нем кондиционер. Однако он дорог и неэффективен. Значительно дешевле использовать недорогую вентиляционную систему, которая в пер-эую очередь предотвращает перегрев воздуха в помещении и увеличение влажности. Вентиляционная система должна устанавливаться таким образом, чтобы удалить воздух с чердака. Почему именно С чердака? Потому что он источник всех проблем.

Все начинается рано утром, как только солнценачинает освещать крышу. Не знаю, известно вам или нет, но черепица на крыше довольно эффективно поглощает солнечное излучение. Покрыты битумом крыши особенно хорошо притягивают и сохраняют солнечное тепло.

Затем тепло от крыши передается воздуху, заполняющему чердак. В течение дня все больше и больше тепла поступает в воздушное пространство чердака. Теперь внутри чердака вступает в действие другой механизм, Хорошо известно, что теплый воздух под нимается вверх, а холодный опускается вниз. Так как воздух на чердаке не перемешивается, то в доме создается распределение температуры, показанное на рис. 1. Слоистое распределение температуры обусловливает накопление тепла. Мы имеем огромный резервуар тепла, которое необходимо использовать.

Во многих домах становится слишком жарко из-за проникновения тепла с чердака. При включении кондиционера вы пытаетесь удалить тепло из жилых помещений, чтобы сделать условия более комфортными. Однако в то же самое время чердак продолжает нагревать дом. Такое противоборство является дорогостоящим и не приводит к нужным результатам.

Единственный способ остановить этот приток тепла с чердака в жилое помещение — это теплоизолировать дом от чердака. Весьма эффективна теплоизоляция с помощью стекловаты. Слой стекловаты толщиной не более 15 см, устилающий потолок, заметно влияет на количество тепла, проникающего вниз.

Однако никакая изоляция не сможет полностью отгородить нижние помещения от проникновения тепла с чердака. Тепло будет проникать в жилые помещения благодаря теплопередаче и излучению.

Чтобы проиллюстрировать это, рассмотрим такой пример. Предположим, что чердак вашего дома имеет размеры 9Х 12 м (площадь 108 м2). Если температура на чердаке составляет в среднем 55 °С, а вы хотите, чтобы температура в жилом помещении не превышала 27 °С, то лучшее, на что можно рассчитывать — это на достижение теплопередачи, не превышающей 2000 Дж/ч. И это в случае совершенной системы изоляции. Для обычного дома с однослойной изоляцией потолка стекловатой проникновение тепла составляет около 4500 Дж/ч.

Опытным путем установлено, что для нейтрализации 9000 Дж тепла кондиционер должен прокачать 1 т воздуха. Таким образом, для устранения влияния нагрева чердака нам потребуется прокачать кондиционером лишние 0,5 т воздуха!

Механизмы охлаждения

Однако фактическое количество тепла, проникающего вниз, зависит от разницы температур на чердаке и в доме. Разница температур в 5 °С соответствует тысячам джоулей. Следовательно, чем холоднее на чердаке, тем меньше работает кондиционер.

Как можно охладить чердак? Необходимо просто проветривать его! Весьма редки случаи, когда температура наружного воздуха больше температуры воздуха на чердаке, где обычно жарко, как в печке; можно охладить чердак, заменив горячий, застоявшийся воздух в нем более холодным извне.

Это относительно просто осуществить, прорубив вентиляционное отверстие в крыше около ее гребня и установив в нем вытяжной вентилятор. Вентилятор нагнетает холодный воздух через выступающий карниз крыши и вытягивает из чердака нагретый, застоявшийся воздух через вентиляционное отверстие.

Мешивание горячего и холодного воздуха и устраняет перепады температур (рис. 2). Необходимо отметить, как она повлияла на температуру внутри чердака. Теперь температура распределяется более равномерно, а средняя температура понизилась.

Хочу заметить, что для проветривания чердака не потребуется очень большой вентилятор. Цель будет достигнута, если обмен воздуха на чердаке будет осуществляться примерно каждые 3 мин.

Основные элементы вентилятора

Размер вентилятора определяется размером чердака. Чердак стандартных размеров (9х 12 м2) имеет объем приблизительно 135 м3. Для обмена такого объема воздуха каждые 4 мин требуется вентилятор, который будет откачивать 34 м3/мин.

Если размер чердака меньше, потребуется вентилятор меньшей мощности. Соотношение здесь простое: объем чердака в м3 делится на желаемое время смены воздуха (в мин) и получается производительность вентилятора. Например 135 м3/4 мин~34 м3/мин. Вентилятор приводится в движение небольшим электродвигателем постоянного тока, характеристика которого обычно линейна: чем больше подводимая к нему мощность, тем быстрее он вращается.

Такая циркуляция воздуха внутри чердака обусловливает перетока. Изменение любой из этих величин вызовет изменение мощности. Например, мотор напряжением 12 В при силе тока ЗА может вращаться со скоростью 6000 об/мин. Если мы уменьшим подводимую к мотору электрическую энергию снижением напряжения до 6 В, то скорость вращения уменьшится в 2 раза и станет равной 3000 об/мин.

С другой стороны, если в том же моторе на 12 В при 3 А, вращающемся с той же скоростью 6000 об/мин, уменьшить ток в 2 раза, сохраняя напряжение на прежнем уровне (12 В при 1,5 А), получится тот же результат: скорость вращения мотора составит 3000 об/мин. Учитывая принцип работы фотоэлектрических преобразователей, понимание причины изменения скорости вращения мотора с изменением потребляемого тока особенно важно.

Объем воздуха, который будут перегонять лопасти вентилятора, прямо пропорционален скорости вращения. Это указывает на возможность регулирования потока воздуха простым изменением скорости вращения мотора.

Несомненно, что для электропитания вытяжного вентилятора можно использовать фотоэлектрические преобразователи. Такой выбор наиболее предпочтителен. Следует заметить при этом, что при подключении фотоэлектрического источника к электромотору вентилятора возникает интересная взаимосвязь.

Фотоэлектрические солнечные элементы обычно можно рассматривать как источники тока. При малой освещенности солнечная батарея генерирует небольшой ток, хотя напряжение остается нормальным. В результате вентилятор (если он вращается) вращается медленно и, следовательно, прокачивает лишь малый объем воздуха.

Это обстоятельство как раз и отвечает задаче проветривания чердака. Утром крыша практически не нагрета, и в это время дня в вентиляции нет необходимости или нужна лишь небольшая вентиляция.

Днем с увеличением солнечной радиации все большая мощность подается на мотор вентилятора от фотоэлектрических преобразователей, и скорость вращения вентилятора возрастает. С увеличением солнечной инсоляции в чердачное помещение поступает все большее количество тепла. Следует отметить, что увеличение скорости вращения вентилятора (обмена воздуха) наблюдается именно тогда, когда в этом есть необходимость.

Ближе к вечеру интенсивность солнечного излучения вновь уменьшается, крыша поглощает меньшее количество тепла и потребность в вентиляции уменьшается. Это согласуется с изменением выходной мощности фотоэлектрических преобразователей, которые вращают вентилятор с меньшей скоростью.

В результате нами разработана саморегулирующаяся система вентиляции чердака, которая поддерживает его температуру на относительно постоянном уровне. Обычно управление вентилятором в зависимости от нагрева чердака осуществляется механическим термовыключателем.

Для упомянутых целей были отобраны два имеющихся в продаже серийных вентилятора, разработанные специально для подобных применений. Расположим наши фотоэлектрические источники вблизи вентиляторов. Помните тем не менее, что можно использовать любую подходящую для вас комбинацию мотора и вентилятора.

Первый вентилятор — вытяжной вентилятор фирмы Solarex Corp. Адреса фирм, выпускающих оба вентилятора, можно найти в списке деталей. (Следует отметить, что при этом мы не пытались сравнивать один вентилятор с другим.)

Солнечная батарея

Упомянутый вентилятор вращается электродвигателем постоянного тока напряжением 12 В. Тем не менее для увеличения срока службы фирма Solarex рекомендует питать мотор напряжением 6 В. При подключении к фотоэлектрической батарее, развивающей 6 В при токе 1,2 А, вентилятор будет обеспечивать обмен воздуха со скоростью 10 м3/мин.

Не составит труда разработка батареи мощностью 7 Вт, удовлетворяющей упомянутым требованиям. Сначала необходимо представить себе требуемую максимальную силу тока. Как было упомянуто выше, она соответствует 1,2 А.

Общеизвестно, что круглый солнечный элемент диаметром 7,5 см выдает ток величиной 1,2 А. Фактически можно найти довольно дешевые некондиционные элементы 7,5 см, которые развивают «лишь» 1 А. Эти элементы подходят для упомянутых целей.

Для достижения мощности в 7 Вт при максимальной интенсивности солнечного излучения потребуется 12 элементов. Элементы можно спаять последовательно, расположив их в 3 ряда по 4 элемента в каждом. При изготовлении батарей следуют рекомендациям, йзложенным в гл. 1. Если для использования в конструкции выбраны некондиционные элементы на 1 А, то для компенсации их дефектности необходимо увеличить количество элементов в батарее на 2 и довести их число до 14.

Второй вентилятор, который мы рассмотрим, поставляется фирмой Wm. Lamb. Его диаметр составляет 35 см; он снабжен линейным электромотором с шарикоподшипниками. Запрессованные шарикоподшипники продлевают срок службы мотора. Питается мотор любым напряжением: 6—48 В. Для наших целей фирма-изготовитель рекомендует использовать напряжение 12В.

Солнечный генератор мощностью 30 Вт будет вращать вентилятор со скоростью, достаточной для обмена воздуха,— около 30 м3/мин, в то время как батарея мощностью 7 Вт обеспечит его энергией, достаточной для обмена воздуха со скоростью 14 м3/мин. На рис. 3 представлена зависимость скорости обмена воздуха от мощности фотоэлектрического преобразователя.

В соответствии с одним из вариантов установки вентиляционного устройства потребуется проделать отверстия в крыше. Поскольку любые работы на крыше сопряжены с риском возможных протечек воды, аккуратность — залог успешного выполнения работы.

Сначала ножовкой пропиливается круглое отверстие в крыше. Оба вентилятора поставляются закрепленными в металлических кожухах, и отверстие в крыше должно точно соответствовать диаметру кожуха. Необходимо убедиться, что место для отверстия выбрано между стропилами крыши!

Затем в отверстие устанавливается вентилятор. Теперь металлический отражатель помещается вокруг устройства, и обильно заливаются гудроном все возможные щели во избежание протечек. Для предотвращения попадания дождя через сделанное отверстие венти-1 лятор накрывается колпаком конусообразной или U-образной формы.

Если нет желания делать отверстие в крыше, имеется другой вариант. Вентилятор можно укрепить над одним из вентиляционных отверстий, расположенных под карнизом крыши. Наилучший способ для этого — укрепить вентилятор под углом 45 ° к настилу чердака. Рекомендуется изготовить каркас из пары рамок, имеющих соотношение сторон 2: 1 (рис. 4), а затем прикрепить вентилятор к одной из них (рис. 5). После этого можно разместить каркас над вентиляционным отверстием. Убедитесь, что отверстие достаточно велико и весь обмениваемый воздух проходит через него, иначе Вентилятор будет работать не достаточно эффективно.

Панель солнечной батареи закрепляется на части крыши, обращенной на юг, и присоединяется к вентилятору. Лучше опустить провода до края крыши и провести их через вентиляционное отверстие в карнизе, чем сверлить для них в крыше специальное отверстие: меньше вероятности нарушить кровлю.

При подключении солнечной батареи к вентилятору обращается внимание на направление вращения электромотора. При одном направлении вращения воздух будет вытягиваться наружу, при другом — втягиваться в помещение. Если вентилятор не вращается в надлежащем направлении, необходимо поменять местами питающие провода.

Список деталей

Вентилятор диаметром 20 см поставляется фирмой Energy Sciences 832 Rockville Pike Rockville, MD 20852 Contact: Larry Miller

Вентилятор диаметром 30 см поставляется фирмой Wm. Lamb Co. 10615 Chandler Blvd. North Hollywood, CA 91601

Фотоэлектрическая батарея (см. текст)

Литература: Байерс Т. 20 конструкций с солнечными элементами: Пер. с англ.— М.: Мир, 1988 год.

Понравилась статья? Поделитесь ей