Контакты

Генеральная совокупность и выборочный метод. Статистическая выборка

Статистические исследования очень трудоемки и дороги, поэтому возникла мысль о замене сплошного наблюдения выборочным.

Основная цель несплошного наблюдения состоит в получении характеристик изучаемой статистической совокупности по обследованной ее части.

Выборочное наблюдение – это метод статистического исследования, при котором обобщающие показатели совокупности устанавливаются только по отдельно взятой части на основе положений случайного отбора.

При выборочном методе изучению подвергается только некоторая часть изучаемой совокупности, при этом подлежащая изучению статистическая совокупность называется генеральной совокупностью.

Выборочной совокупностью или просто выборкой можно называть отобранную из генеральной совокупности часть единиц, которая будет подвергаться статистическому исследованию.

Значение выборочного метода: при минимальной численности исследуемых единиц проведение статистического исследования будет происходить в более короткие промежутки времени и с наименьшими затратами средств и труда.

В генеральной совокупности доля единиц, которая обладает изучаемым признаком, называется генеральной долей (обозначается р), а средняя величина изучаемого варьирующего признака – это генеральная средняя (обозначается х).

В выборочной совокупности долю изучаемого признака называют выборочной долей, или частью (обозначается w), средняя величина в выборке – это выборочная средняя.

Если в период обследования будут соблюдены все правила его научной организации, то выборочный метод даст довольно точны результаты, и поэтому данный метод целесообразно применять для проверки данных сплошного наблюдения.

Этот метод получил широкое распространение в государственной и вневедомственной статистике, потому что при исследовании минимальной численности изучаемых единиц позволяет тщательно и точно провести исследование.

Изучаемая статистическая совокупность состоит из единиц с варьирующими признаками. Состав выборочной совокупности может отличаться от состава генеральной совокупности, это расхождение между характеристиками выборки и генеральной совокупности составляет ошибку выборки.

Ошибки, свойственные выборочному наблюдению, характеризуют размер расхождения между данными выборочного наблюдения и всей совокупности. Ошибки, возникающие в ходе выборочного наблюдения, называются ошибками репрезентативности и делятся на случайные и систематические.

Если выборочная совокупность недостаточно точно воспроизводит всю совокупность из–за несплошного характера наблюдения, то это называют случайными ошибками, и их размеры определяются с достаточной точностью на основании закона больших чисел и теории вероятностей.

Систематические ошибки возникают в результате нарушения принципа случайности отбора единиц совокупности для наблюдения.

2. Виды и схемы отбора

Размер ошибки выборки и методы ее определения зависят от вида и схемы отбора.

Различают четыре вида отбора совокупности единиц наблюдения:

1) случайный;

2) механический;

3) типический;

4) серийный (гнездовой).

Случайный отбор – наиболее распространенный способ отбора в случайной выборке, его еще называют методом жеребьевки, при нем на каждую единицу статистической совокупности заготовляется билет с порядковым номером.

Далее в случайном порядке отбирается необходимое количество единиц статистической совокупности. При этих условиях каждая из них имеет одинаковую вероятность попасть в выборку, например тиражи выигрышей, когда из общего количества выпущенных билетов в случайном порядке наугад отбирается определенная часть номеров, на которые приходятся выигрыши. При этом всем номерам обеспечивается равная возможность попасть в выборку.

Механический отбор – это способ, когда вся совокупность разбивается на однородные по объему группы по случайному признаку, потом из каждой группы берется только одна единица Все единицы изучаемой статистической совокупности предварительно располагаются в определенном порядке, но в зависимости от объема выборки механически через определенный интервал отбирается необходимое количество единиц.

Типический отбор – это способ, при котором исследуемая статистическая совокупность разбивается по существенному, типическому признаку на качественно однородные, однотипные группы, затем из каждой этой группы случайным способом отбирается определенное количество единиц, пропорциональное удельному весу группы во всей совокупности.

Типический отбор дает более точные результаты, так как при нем в выборку попадают представители всех типических групп.

Серийный (гнездовой) отбор. Отбору подлежат целые группы (серии, гнезда), отобранные случайным или механическим способом. По каждой такой группе, серии проводится сплошное наблюдение, а результаты переносятся на всю совокупность.

Точность выборки зависит и от схемы отбора. Выборка может быть проведена по схеме повторного и бесповторного отбора.

Повторный отбор. Каждая отобранная единица или серия возвращается во всю совокупность и может вновь попасть в выборку Это так называемая схема возвращенного шара.

Бесповторный отбор. Каждая обследованная единица изымается и не возвращается в совокупность, поэтому она не попадает в повторное обследование. Эта схема получила название невозвращенного шара.

Бесповторный отбор дает более точные результаты, потому что при одном и том же объеме выборки наблюдение охватывает большее количество единиц изучаемой совокупности.

Комбинированный отбор может проходить одну или несколько ступеней. Выборка называется одноступенчатой, если отобранные однажды единицы совокупности подвергаются изучению.

Выборка называется многоступенчатой, если отбор совокупности проходит по ступеням, последовательным стадиям, причем каждая ступень, стадия отбора имеет свою единицу отбора.

Многофазная выборка – на всех ступенях выборки сохраняется одна и та же единица отбора, но проводится несколько стадий, фаз выборочных обследований, которые различаются между собой широтой программы обследования и объемом выборки.

Характеристики параметров генеральной и выборочной совокупностей обозначаются следующими символами:

N – объем генеральной совокупности;

n – объем выборки;

X – генеральная средняя;

х – выборочная средняя;

р – генеральная доля;

w – выборочная доля;

2 – генеральная дисперсия (дисперсия признака в генеральной совокупности);

2 – выборочная дисперсия того же признака;

?– среднее квадратическое отклонение в генеральной совокупности;

?– среднее квадратическое отклонение в выборке.

3. Ошибки выборки

Каждая единица при выборочном наблюдении должна иметь равную с другими возможность быть отобранной – это является основой собственнослучайной выборки.

Собственнослучайная выборка – это отбор единиц из всей генеральной совокупности посредством жеребьевки или другим подобным способом.

Принципом случайности является то, что на включение или исключение объекта из выборки не может повлиять любой фактор, кроме случая.

Доля выборки – это отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:


Собственнослучайный отбор в чистом виде является исходным среди всех других видов отбора, в нем заключаются и реализуются основные принципы выборочного статистического наблюдения.

Два основных вида обобщающих показателей, которые используют в выборочном методе – это средняя величина количественного признака и относительная величина альтернативного признака.

Выборочная доля (w), или частность, определяется отношением числа единиц, обладающих изучаемым признаком m, к общему числу единиц выборочной совокупности (n):


Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки.

Ошибка выборки, ее еще называют ошибкой репрезентативности, представляет собой разность соответствующих выборочных и генеральных характеристик:

?х =|х – х|;

?w =|х – p|.

Только выборочным наблюдениям присуща ошибка выборки

Выборочная средняя и выборочная доля – это случайные величины, принимающие различные значения в зависимости от единиц изучаемой статистической совокупности, которые попали в выборку. Соответственно ошибки выборки – тоже случайные величины и также могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок – среднюю ошибку выборки.

Средняя ошибка выборки определяется объемом выборки: чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки. Охватывая выборочным обследованием все большее количество единиц генеральной совокупности, все более точно характеризуем всю генеральную совокупность.

Средняя ошибка выборки зависит от степени варьирования изучаемого признака, в свою очередь степень варьирования характеризуется дисперсией? 2 или w(l – w) – для альтернативного признака. Чем меньше вариация признака и дисперсия, тем меньше средняя ошибка выборки, и наоборот.

При случайном повторном отборе средние ошибки теоретически рассчитывают по следующим формулам:

1) для средней количественного признака:


где? 2 – средняя величина дисперсии количественного признака.

2) для доли (альтернативного признака):


Так как дисперсия признака в генеральной совокупности? 2 точно неизвестна, на практике пользуются значением дисперсии S 2 , рассчитанным для выборочной совокупности на основании закона больших чисел, согласно которому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики генеральной совокупности.

Формулы средней ошибки выборки при случайном повторном отборе следующие. Для средней величины количественного признака: генеральная дисперсия выражается через выборную следующим соотношением:


где S 2 – значение дисперсии.

Механическая выборка – это отбор единиц в выборочную совокупность из генеральной, которая разбита по нейтральному признаку на равные группы; производится так, что из каждой такой группы в выборку отбирается лишь одна единица.

При механическом отборе единицы изучаемой статистической совокупности предварительно располагают в определенном порядке, после чего отбирают заданное число единиц механически через определенный интервал. При этом размер интервала в генеральной совокупности равен обратному значению доли выборки.

При достаточно большой совокупности механический отбор по точности результатов близок к собственнослучайному Поэтому для определения средней ошибки механической выборки используют формулы собственнослучайной бесповторной выборки.

Для отбора единиц из неоднородной совокупности применяется так называемая типическая выборка, используется, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, от которых зависят изучаемые показатели.

Затем из каждой типической группы собственнослучайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая выборка обычно применяется при изучении сложных статистических совокупностей.

Типическая выборка дает более точные результаты. Типизация генеральной совокупности обеспечивает репрезентативность такой выборки, представительство в ней каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки. Поэтому при определении средней ошибки типической выборки в качестве показателя вариации выступает средняя из внутригрупповых дисперсий.

Серийная выборка предполагает случайный отбор из генеральной совокупности равновеликих групп для того, чтобы в таких группах подвергать наблюдению все без исключения единицы.

Поскольку внутри групп (серий) обследуются все без исключения единицы, средняя ошибка выборки (при отборе равновеликих серий) зависит только от межгрупповой (межсерийной) дисперсии.

4. Способы распространения выборочных результатов на генеральную совокупность

Характеристика генеральной совокупности на основе выборочных результатов – это конечная цель выборочного наблюдения.

Выборочный метод применяется для получения характеристик генеральной совокупности по определенным показателям выборки. В зависимости от целей исследования это осуществляется прямым пересчетом показателей выборки для генеральной совокупности или методом расчета поправочных коэффициентов.

Способ прямого пересчета в том, что при нем показатели выборочной доли w или средней х распространяются на генеральную совокупность с учетом ошибки выборки.

Способ поправочных коэффициентов применяется, когда целью выборочного метода является уточнение результатов сплошного учета. Данный способ используется при уточнении данных ежегодных переписей скота у населения.

Выборка

Выборка или выборочная совокупность - множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.

Характеристики выборки:

  • Качественная характеристика выборки – кого именно мы выбираем и какие способы построения выборки мы для этого используем.
  • Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.

Необходимость выборки

  • Объект исследования очень обширный. Например, потребители продукции глобальной компании – огромное количество территориально разбросанных рынков.
  • Существует необходимость в сборе первичной информации.

Объём выборки

Объём выборки - число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30-35.

Зависимые и независимые выборки

При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми . Примеры зависимых выборок:

  • пары близнецов,
  • два измерения какого-либо признака до и после экспериментального воздействия,
  • мужья и жёны
  • и т. п.

В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми , например:

Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.

Сравнение выборок производится с помощью различных статистических критериев:

  • и др.

Репрезентативность

Выборка может рассматриваться в качестве репрезентативной или нерепрезентативной.

Пример нерепрезентативной выборки

  1. Исследование с экспериментальной и контрольной группами, которые ставятся в разные условия.
    • Исследование с экспериментальной и контрольной группами с привлечением стратегии попарного отбора
  2. Исследование с использованием только одной группы - экспериментальной.
  3. Исследование с использованием смешанного (факторного) плана - все группы ставятся в разные условия.

Типы выборки

Выборки делятся на два типа:

  • вероятностные
  • невероятностные

Вероятностные выборки

  1. Простая вероятностная выборка:
    • Простая повторная выборка. Использование такой выборки основывается на предположении, что каждый респондент с равной долей вероятности может попасть в выборку. На основе списка генеральной совокупности составляются карточки с номерами респондентов. Они помещаются в колоду, перемешиваются и из них наугад вынимается карточка, записывается номер, потом возвращается обратно. Далее процедура повторяется столько раз, какой объём выборки нам необходим. Минус: повторение единиц отбора.

Процедура построения простой случайной выборки включает в себя следующие шаги:

1. необходимо получить полный список членов генеральной совокупности и пронумеровать этот список. Такой список, напомним, называется основой выборки;

2. определить предполагаемый объем выборки, то есть ожидаемое число опрошенных;

3. извлечь из таблицы случайных чисел столько чисел, сколько нам требуется выборочных единиц. Если в выборке должно оказаться 100 человек, из таблицы берут 100 случайных чисел. Эти случайные числа могут генерироваться компьютерной программой.

4. выбрать из списка-основы те наблюдения, номера которых соответствуют выписанным случайным числам

  • Простая случайная выборка имеет очевидные преимущества. Этот метод крайне прост для понимания. Результаты исследования можно распространять на изучаемую совокупность. Большинство подходов к получению статистических выводов предусматривают сбор информации с помощью простой случайной выборки. Однако метод простой случайной выборки имеет как минимум четыре существенных ограничения:

1. зачастую сложно создать основу выборочногo наблюдения, которая позволила бы провести простую случайную выборку.

2. результатом применения простой случайной выборки может стать большая совокупность, либо совокупность, распределенная по большой географической территории, что значительно увеличивает время и стоимость сбора данных.

3. результаты применения простой случайной выборки часто характеризуются низкой точностью и большей стандартной ошибкой, чем результаты применения других вероятностных методов.

4. в результате применения SRS может сформироваться нерепрезентативная выборка. Хотя выборки, полученные простым случайным отбором, в среднем адекватно представляют генеральную совокупность, некоторые из них крайне некорректно представляют изучаемую совокупность. Вероятность этого особенно велика при небольшом объеме выборки.

  • Простая бесповторная выборка. Процедура построения выборки такая же, только карточки с номерами респондентов не возвращаются обратно в колоду.
  1. Систематическая вероятностная выборка. Является упрощенным вариантом простой вероятностной выборки. На основе списка генеральной совокупности через определённый интервал (К) отбираются респонденты. Величина К определяется случайно. Наиболее достоверный результат достигается при однородной генеральной совокупности, иначе возможны совпадение величины шага и каких-то внутренних циклических закономерностей выборки (смешение выборки). Минусы: такие же как и в простой вероятностной выборке.
  2. Серийная (гнездовая) выборка. Единицы отбора представляют собой статистические серии (семья, школа, бригада и т. п.). Отобранные элементы подвергаются сплошному обследованию. Отбор статистических единиц может быть организован по типу случайной или систематической выборки. Минус: Возможность большей однородности, чем в генеральной совокупности.
  3. Районированная выборка. В случае неоднородной генеральной совокупности, прежде, чем использовать вероятностную выборку с любой техникой отбора, рекомендуется разделить генеральную совокупность на однородные части, такая выборка называется районированной. Группами районирования могут выступать как естественные образования (например, районы города), так и любой признак, заложенный в основу исследования. Признак, на основе которого осуществляется разделение, называется признаком расслоения и районирования.
  4. «Удобная» выборка. Процедура «удобной» выборки состоит в установлении контактов с «удобными» единицами выборки - с группой студентов, спортивной командой, с друзьями и соседями. Если необходимо получить информацию о реакции людей на новую концепцию, такая выборка вполне обоснована. «Удобную» выборку часто используют для предварительного тестирования анкет.

Невероятностные выборки

Отбор в такой выборке осуществляется не по принципам случайности, а по субъективным критериям – доступности, типичности, равного представительства и т.д.

  1. Квотная выборка – выборка строится как модель, которая воспроизводит структуру генеральной совокупности в виде квот (пропорций) изучаемых признаков. Число элементов выборки с различным сочетанием изучаемых признаков определяется с таким расчётом, чтобы оно соответствовало их доле (пропорции) в генеральной совокупности. Так, например, если генеральная совокупность у нас представлена 5000 человек, из них 2000 женщин и 3000 мужчин, тогда в квотной выборке у нас будут 20 женщин и 30 мужчин, либо 200 женщин и 300 мужчин. Квотированные выборки чаще всего основываются на демографических критериях: пол, возраст, регион, доход, образование и прочих. Минусы: обычно такие выборки нерепрезентативны, т.к. нельзя учесть сразу несколько социальных параметров. Плюсы: легкодоступный материал.
  2. Метод снежного кома. Выборка строится следующим образом. У каждого респондента, начиная с первого, просятся контакты его друзей, коллег, знакомых, которые подходили бы под условия отбора и могли бы принять участие в исследовании. Таким образом, за исключением первого шага, выборка формируется с участием самих объектов исследования. Метод часто применяется, когда необходимо найти и опросить труднодоступные группы респондентов (например, респондентов, имеющих высокий доход, респондентов, принадлежащих к одной профессиональной группе, респондентов, имеющих какие-либо схожие хобби/увлечения и т.д.)
  3. Стихийная выборка – выборка так называемого «первого встречного». Часто используется в теле- и радиоопросах. Размер и состав стихийных выборок заранее не известен, и определяется только одним параметром – активностью респондентов. Минусы: невозможно установить какую генеральную совокупность представляют опрошенные, и как следствие – невозможность определить репрезентативность.
  4. Маршрутный опрос – часто используется, если единицей изучения является семья. На карте населённого пункта, в котором будет производиться опрос, нумеруются все улицы. С помощью таблицы (генератора) случайных чисел отбираются большие числа. Каждое большое число рассматривается как состоящее из 3-х компонентов: номер улицы (2-3 первых числа), номер дома, номер квартиры. Например, число 14832: 14 – это номер улицы на карте, 8 – номер дома, 32 – номер квартиры.
  5. Районированная выборка с отбором типичных объектов. Если после районирования из каждой группы отбирается типичный объект, т.е. объект, который по большинству изучаемых в исследовании характеристик приближается к средним показателям, такая выборка называется районированной с отбором типичных объектов.

6.Модальная выборка. 7.экспертная выборка. 8.Гетерогенная выборка.

Стратегии построения групп

Отбор групп для их участия в психологическом эксперименте осуществляется с помощью различных стратегий, которые нужны для того, чтобы обеспечить максимально возможное соблюдение внутренней и внешней валидности .

Рандомизация

Рандомизация , или случайный отбор , используется для создания простых случайных выборок. Использование такой выборки основывается на предположении, что каждый член популяции с равной вероятностью может попасть в выборку. Например, чтобы сделать случайную выборку из 100 студентов вуза , можно сложить бумажки с именами всех студентов вуза в шляпу, а затем достать из неё 100 бумажек - это будет случайным отбором (Гудвин Дж., с. 147).

Попарный отбор

Попарный отбор - стратегия построения групп выборки, при котором группы испытуемых составляются из субъектов, эквивалентных по значимым для эксперимента побочным параметрам. Данная стратегия эффективна для экспериментов с использованием экспериментальных и контрольных групп с лучшим вариантом - привлечением близнецовых пар (моно- и дизиготных), так как позволяет создать...

Стратометрический отбор

Стратометрический отбор - рандомизация с выделением страт (или кластеров). При данном способе формирования выборки генеральная совокупность делится на группы (страты), обладающие определёнными характеристиками (пол , возраст , политические предпочтения, образование , уровень доходов и др.), и отбираются испытуемые с соответствующими характеристиками.

Приближённое моделирование

Приближённое моделирование - составление ограниченных выборок и обобщение выводов об этой выборке на более широкую популяцию. Например, при участии в исследовании студентов 2-го курса университета, данные этого исследования распространяются на «людей в возрасте от 17 до 21 года». Допустимость подобных обобщений крайне ограничена.

Приближенное моделирование – формирование модели, которая для четко оговоренного класса систем (процессов) описывает его поведение (или нужные явления) с приемлемой точностью.

Примечания

Литература

Наследов А. Д. Математические методы психологического исследования. - СПб.: Речь, 2004.

  • Ильясов Ф. Н. Репрезентативность результатов опроса в маркетинговом исследовании // Социологические исследования. 2011. № 3. С. 112-116.

См. также

  • В некоторых типах исследований выборку делят на группы:
    • экспериментальная
    • контрольная
  • Когорта

Ссылки

  • Понятие выборки. Основные характеристики выборки. Типы выборки

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Выборка" в других словарях:

    выборка - группа испытуемых, представляющих определенную популяцию и отобранных для эксперимента или исследования. Противоположное понятие совокупность генеральная. Выборка есть часть совокупности генеральной. Словарь практического психолога. М.: АСТ,… … Большая психологическая энциклопедия

    выборка - выборка Часть генеральной совокупности элементов, которая охватывается наблюдением (часто ее называют выборочной совокупностью, а выборкой — сам метод выборочного наблюдения). В математической статистике принят… … Справочник технического переводчика

    - (sample) 1. Небольшое количество товара, отобранное, чтобы представлять все его количество. См.: продажа по образцу (sale by sample). 2. Небольшое количество товара, переданное потенциальным покупателям, чтобы дать им возможность провести его… … Словарь бизнес-терминов

    Выборка - часть генеральной совокупности элементов, которая охватывается наблюдением (часто ее называют выборочной совокупностью, а выборкой сам метод выборочного наблюдения). В математической статистике принят принцип случайного отбора; это… … Экономико-математический словарь

    - (sample) Произвольный отбор подгруппы элементов из основной совокупности, характеристики которых используются для оценки всей совокупности в целом. Выборочный метод используется, когда слишком долго или слишком дорого обследовать всю совокупность … Экономический словарь

    См … Словарь синонимов

Процедура составления плана выборки включает последовательное решение трех следующих задач:

Определение объекта исследования;

Определение структуры выборки;

Определение объема выборки.

Как правило, объект маркетингового исследования представляет собой совокупность объектов наблюдения, в качестве которых могут выступать потребители, сотрудники компании, посредники и т.д. Если эта совокупность настолько малочисленна, что исследовательская группа располагает необходимыми трудовыми, финансовыми и временными возможностями для установления контакта с каждым из ее элементов, то вполне реально проведение сплошного исследования всей совокупности. В этом случае, определив объект исследования, можно приступать к следующей процедуре (выбору метода сбора данных, орудия исследования и способа связи с аудиторией).

Однако на практике очень часто не представляется возможным или целесообразным проведение сплошного исследования всей совокупности. Для этого могут быть следующие причины:

Невозможность установления контакта с некоторыми элементами совокупности;

Неоправданно большие расходы на проведение сплошного исследования или наличие финансовых ограничений, не позволяющих проведение сплошного исследования;

Сжатые сроки, отведенные для исследования, обусловленные утратой со временем актуальности информации или другими причинами и не позволяющие осуществить сбор, систематизацию и анализ обширных данных для всей совокупности.

Поэтому большие и разбросанные совокупности часто изучаются с помощью выборки, под которой, как известно, понимается часть совокупности, призванная олицетворять совокупность в целом.

Точность, с которой выборка отражает совокупность в целом, зависит от структуры и размера выборки .

Различают два подхода к структуре выборки - вероятностный и детерминированный.

Вероятностный подход к структуре выборки предполагает, что любой элемент совокупности может быть выбран с определенной (не нулевой) вероятностью. Существуют различные виды выборок, основанных на теории вероятностей (типическая, гнездовая и др.). Наиболее простой и распространенной на практике является простая случайная выборка, при которой каждый элемент совокупности имеет равную вероятность выбора для исследования.

Вероятностная выборка более точна, позволяет исследователю оценить степень достоверности собранных им данных, хотя она сложней и дороже, чем детерминированная.

Детерминированный подход к структуре выборки предполагает, что выбор элементов совокупности производится методами, основанными либо на соображениях удобства, либо на решении исследователя, либо на контингентных группах.

на соображениях удобства , состоит в выборе любых элементов совокупности исходя из простоты установления контакта с ними. Несовершенство этого метода обусловлено, возможно, низкой репрезентативностью полученной выборки, т.к. удобные для исследователя элементы совокупности могут быть недостаточно характерными представителями совокупности в силу неслучайного и необоснованного их отбора.

Однако, с другой стороны, простота, экономичность и оперативность исследования, проводимого этим методом, снискали ему довольно широкое распространение на практике и, прежде всего при проведении предварительных исследований, направленных на уточнение основных проблем.

Метод формирования выборки, основанный на решении исследователя , состоит в выборе элементов совокупности, которые, по его мнению, являются ее характерными представителями. Этот метод является более совершенным, чем предыдущий, поскольку в его основе лежит ориентировка на характерных представителей исследуемой совокупности, хотя и подбираемых на основе субъективных представлений исследователей о ней.

Метод формирования выборки, основанный на контингентных нормах , состоит в выборе характерных элементов совокупности в соответствии с полученными ранее характеристиками совокупности в целом. Эти характеристики могут быть получены путем проведения предварительных исследований и в отличие от предыдущего метода не носят субъективного характера. Поэтому данный метод является более совершенным, он позволяет получить выборочные совокупности не менее представительные, чем вероятностные выборки при значительно меньших затратах на проведение обследования.

Выбрав структуру выборки (подход к ее формированию, вид вероятностной или метая формирования детерминированной выборки), исследователю предстоит определить объем, т.е. количество элементов выборочной совокупности.

Объем выборки определяет достоверность информации , полученной в результате ее исследования, а также необходимые для проведения исследования затраты. Объем выборки зависит от уровня однородности или разновидности изучаемых объектов.

Чем больше объем выборки, тем выше ее точность и больше затраты на проведения ее обследования. При вероятностном подходе к структуре выборки ее объем может быть определен с помощью известных статистических формул, на основе заданных требований к ее точности.

На практике используется несколько подходов к определению объема выборки:

1. Произвольный подход основан на применении «правила большого пальца». Например, бездоказательно принимается, что для получения точных результатов выборка должна составлять 5 % от совокупности. Данный подход является простым и легким в исполнении, однако не представляется возможным установить точность полученных результатов. При достаточно большой совокупности он к тому же может быть и весьма дорогим.

Объем выборки может быть установлен исходя из неких заранее оговоренных условий. К примеру, заказчик маркетингового исследования знает, что при изучении общественного мнения выборка обычно составляет 1000-1200 человек, поэтому он рекомендует исследователю придерживаться данной цифры. В случае, если на каком-то рынке проводятся ежегодные исследования, то в каждом году используется выборка одного и того же объема. В отличие от первого подхода здесь при определении объема выборки используется известная логика, которая, однако, является весьма уязвимой.

Например, при проведении определенных исследований может потребоваться точность меньше, чем при изучении общественного мнения, да и объем совокупности может быть во много раз меньше, нежели при изучении общественного мнения. Таким образом, данный подход не принимает в расчет текущие обстоятельства и может быть достаточно дорогим.

В ряде случаев в качестве главного аргумента при определении объема выборки используется стоимость проведения обследования. Так, в бюджете маркетинговых исследований предусматриваются затраты на проведение определенных обследований, которые нельзя превышать. Очевидно, что ценность получаемой информации не принимается в расчет. Однако в ряде случаев и малая выборка может дать достаточно точные результаты.

Представляется разумным учитывать затраты не абсолютным образом, а по отношению к полезности информации, полученной в результате проведенных обследований. Заказчик и исследователь должны рассмотреть различные объемы выборки и методы сбора данных, затраты, учесть другие факторы

2. Объем выборки от уровня доверительного интервала допустимой ошибки, каковая, как уже говорилось, задается целесообразной точностью итоговых обобщений: от повышенной до ориентировочной. Однако здесь имеются в виду так называемые случайные ошибки, связанные с природой любых статистических погрешностей. Именно они и вычисляются как ошибки репрезентативности вероятностных выборок.

В. И. Паниотто приводит следующие расчеты репрезентативной выборки с допущением 5-процентной ошибки (табл. 4.2).

Таблица 4.2

Расчетная таблица выборки

Для совокупности более 100000 выборка составляет 400 единиц. Если же иметь в виду генеральные совокупности численностью от 5 тыс. и больше, то, по расчетам того же автора, можно указать величины фактической ошибки выборки в зависимости от ее объема, что для нас весьма важно, памятуя, что величина допустимой ошибки зависит от цели исследования и необязательно должна приближаться к 5-процентному уровню.

Таблица 4.3

Расчетная таблица

Объем выборки, если генеральная совокупность  5000

Фактическая ошибка при данном объёме выборки, %

Наряду со случайными возможны ошибки систематического характера. Они зависят от организации выборочного обследования. Это разнообразные смещения выборки в сторону одного из полюсов выборочного параметра.

3. Объем выборки на основе статистического анализа . Этот подход основан на определении минимального объема выборки исходя из определенных требований к надежности и достоверности получаемых результатов. Он также используется при анализе полученных результатов для отдельных подгрупп, формируемых в составе выборки по полу, возрасту, уровню образования и т.п. Требования к надежности и точности результатов для отдельных подгрупп диктуют определенные требования к объему выборки в целом.

Наиболее теоретически обоснованный и корректный подход к определению объема выборки основан на расчете достоверных интервалов. Понятие вариации характеризует величину несхожести (схожести) ответов респондентов на определенный вопрос. В более строгом плане вариацией значений какого-либо признака в совокупности называется различие его значений у разных единиц данной совокупности в один и тот же период или момент времени. Результаты ответов на вопросы опроса обычно представляются в форме кривой распределения (рис. 4.1). При высокой схожести ответов говорят о малой вариации (узкая кривая распределения) и при низкой схожести ответов – о высокой вариации (широкая кривая распределения).

В качестве меры вариации обычно принимается среднее квадратическое отклонение, которое характеризует среднее расстояние от средней оценки ответов каждого респондента на определенный вопрос.

Малая вариация

Высокая вариация

Рис. 4.1. Вариация и кривые распределения

Поскольку все маркетинговые решения принимаются в условиях неопределенности, то это обстоятельство целесообразно учесть при определении объема выборки. Так как определение исследуемых величин для совокупности в узком осуществляется на основе выборочной статистики, то следует установить диапазон (доверительный интервал), в который, как ожидается, попадут оценки для совокупности в целом, и ошибку их определения.

Доверительный интервал – это диапазон, крайним точкам которого соответствует определенный процент определенных ответов на какой-то вопрос. Доверительный интервал тесно связан со средним квадратическим отклонением изучаемого признака в генеральной совокупности: чем оно больше, тем шире должен быть доверительный интервал, чтобы включить в свой состав определенный процент ответов.

Доверительный интервал, равный или 95 %, или 99 %, является стандартным при проведении маркетинговых исследований. Ни одна фирма не проводит маркетинговых исследований, формируя несколько выборок. И математическая статистика дает возможность получить некую информацию о выборочном распределении, владея только данными о вариации единственной выборки.

Индикатором степени отличия оценки, истинной для совокупности в целом, от оценки, которая ожидается для типичной выборки, является средняя квадратическая ошибка. Причем, чем больше объем выборки, тем меньше ошибка. Высокое значение вариации обусловливает высокое значение ошибки и наоборот.

Когда на заданный вопрос существует только два варианта ответа, выраженные в процентах (используется процентная мера), объем выборки определяется по следующей формуле:

где n – объем выборки; z – нормированное отклонение, определяемое исходя из выбранного уровня доверительности; p – найденная вариация для выборки; g – (100-р); е – допустимая ошибка.

При определении показателя вариации для определенной совокупности прежде всего целесообразно провести предварительный качественный анализ исследуемой совокупности, в первую очередь установить схожесть единиц совокупности в демографическом, социальном и других отношениях, представляющих интерес для исследователя. Возможно проведение пилотного исследования, использование результатов подобных исследований, проведенных в прошлом. При использовании процентной меры изменчивости принимается в расчет то обстоятельство, что максимальная изменчивость достигается для р = 50 %, что является наихудшим случаем. К тому же этот показатель радикальным образом не влияет на объем выборки. Учитывается также мнение заказчика исследования об объеме выборки.

Возможно определение объема выборки на основе использования средних значений, а не процентных величин.

где s – среднее квадратическое отклонение.

На практике, если выборка формируется заново и схожие опросы не проводились, то s не известно. В этом случае целесообразно задавать погрешность е в долях от среднеквадратического отклонения. Расчетная формула преобразуется и приобретает следующий вид:

где .

Выше шел разговор о совокупностях очень больших размеров. Однако в ряде случаев совокупности не являются большими. Обычно, если выборка составляет менее пяти процентов от совокупности, то совокупность считается большой и расчеты проводятся по вышеприведенным правилам. Если объем выборки превышает 5 % от совокупности, то последняя считается малой и в вышеприведенные формулы вводится поправочный коэффициент.

Объем выборки в данном случае определяется следующим образом:

,

где n - объем выборки для малой совокупности; n 0 – объем выборки, рассчитанный по приведенным выше формулам; N – объем генеральной совокупности.

Очевидно, что использование выборки меньших размеров приведет к экономии времени и средств.

Приведенные формулы расчета объема выборки основаны на предположении, что все правила формирования выборки были соблюдены и единственной ошибкой выборки является ошибка, обусловленная ее объемом. Однако, следует помнить, что объем выборки определяет точность полученных результатов, но не их представительность.

Последняя определяется методом формирования выборки. Все формулы для расчета объема выборки предполагают, что репрезентативность гарантируется использованием корректных вероятностных процедур формирования выборки.

Объем, выборки определяется аналитическими, задачами исследования, а ее репрезентативность - целевой установкой программы. Именно программа задает образ необходимой генеральной совокупности для проведения выборки. Будет ли это все население или особые его структурные образования, все элементы изучаемого объекта или только выделяемые по заданным программой критериям, генеральную совокупность составляют все единицы, определенного в программе объекта.

При детерминированном подхода к структуре выборки в общем случае не представляется возможным расчетным путем точно определить ее объем в соответствии с заданным критерием достоверности полученной информации. В этом случае объем выборки может быть определен эмпирически. Ориентиром здесь может служить опыт проведения маркетинговых исследований за рубежом. Так, при обследовании покупателей высокая точность выборки обеспечивается, даже если ее объем не превышает 1% всей совокупности при проведении опросов покупателей средних и крупных розничных фирм, количество опрашиваемых (объем выборки), как правило, колеблется от 500 до 1000 человек.

Значение процедуры выбора метода сбора первичной информации, и орудия исследования состоит в том, что результаты этого выбора определяют как достоверность и точность подлежащей сбору информации, так и продолжительность, и дороговизну ее сбора.

Часто бывает так, что необходимо проанализировать какое-либо конкретное социальное явление и получить информацию о нем. Такие задания часто возникают в статистике и при статистических исследованиях. Проверить полностью определенное социальное явление чаще всего бывает невозможным. Например, как узнать мнение населения или всех жителей определенного города по какому-либо вопросу? Спрашивать абсолютно всех – дело практически невозможное и очень трудоемкое. В таких случаях нам и необходима выборка. Это именно то понятие, на котором основаны практически все исследования и анализы.

Что такое выборка

При анализе конкретного социального явления необходимо получить информацию о нем. Если взять любое исследование, то можно заметить, что исследованию и анализу подлежит не каждая единица совокупности объекта исследования. Во внимание берется только определенная часть всей этой совокупности. Вот этот процесс и является выборкой: когда исследуются только определенные единицы из множества.

Конечно же, многое зависит от вида выборки. Но есть и основные правила. Главное из них гласит, что отбор из совокупности должен быть абсолютно случайным. Единицы совокупности, которые будут использованы, не должны быть выбраны из-за какого-либо критерия. Грубо говоря, если необходимо набрать совокупность из населения определенного города и отобрать только мужчин, то в исследовании будет ошибка, потому что отбор был проведен не случайно, а отобран по гендерному признаку. Практически все методы выборки основаны на этом правиле.

Правила выборки

Для того чтобы отобранная совокупность отражала основные качества всего явления, она должна быть построена по конкретным законам, где основное внимание необходимо уделять следующим категориям:

  • выборка (выборочная совокупность);
  • генеральная совокупность;
  • репрезентативность;
  • ошибка репрезентативности;
  • единица совокупности;
  • способы построения выборки.

Особенности выборочного наблюдения и составления выборки заключаются в следующем:

  1. Все полученные результаты основаны на математических законах и правилах, то есть при правильном проведении исследования и при правильных расчетах результаты не будут искажены по субъективному признаку
  2. Дает возможность значительно быстрее и с меньшими затратами времени и ресурсов получить результат, изучая не весь массив событий, а только их часть.
  3. Может быть применено для изучения различных объектов: от конкретных вопросов, например, возраст, пол интересующей нас группы, к изучению общественного мнения или уровня материального обеспечения населения.

Выборочное наблюдение

Выборочное - это такое статистическое наблюдение, при котором исследованию подвергается не вся совокупность изучаемого, а лишь некоторая, отобранная определенным образом ее часть, а полученные результаты изучения этой части распространяются на всю совокупность. Эта часть называется выборочной совокупностью. Это единственный способ изучения большого массива объекта исследования.

Но выборочное наблюдение может использоваться только в тех случаях, когда необходимо исследовать лишь малую группу единиц. Например, при исследовании соотношения мужчин к женщинам в мире, будет использоваться выборочное наблюдение. По понятным причинам – взять во внимание каждого жителя нашей планеты невозможно.

А вот при таком же исследовании, но не всех жителей земли, а определенного 2 «А» класса в конкретной школе, определенного города, определенной страны, может обойтись без выборочного наблюдения. Ведь проанализировать весь массив объекта исследования – вполне возможно. Необходимо посчитать мальчиков и девочек этого класса - вот и будет соотношение.


Выборочная и генеральная совокупность

На самом деле все не так сложно, как звучит. В любом объекте изучения есть две системы: генеральная и выборочная совокупность. Что же это такое? Все единицы относятся к генеральной. А к выборочной – те единицы общей совокупности, которые были взяты для выборки. Если все правильно сделано, то отобранная часть будет составлять уменьшенный макет всей (генеральной) совокупности.

Если говорить о генеральной совокупности, то можно выделить всего две ее разновидности: определенная и неопределенная генеральная совокупность. Зависит от того, известно ли общее количество единиц данной системы или нет. Если это определенная генеральная совокупность, то выборку будет делать легче из-за того, что известно, какой процент от общего количества единиц будет составлять выборка.

Этот момент очень необходим в исследованиях. Например, если необходимо исследовать процент недоброкачественной продукции кондитерских изделий на конкретном заводе. Допустим, что генеральная совокупность уже определена. Точно известно, что в год это предприятие производит 1000 кондитерских изделий. Если сделать выборку 100 случайных кондитерских изделий из этой тысячи и отправить их на экспертизу, то погрешность будет минимальной. Грубо говоря, исследованию подлежало 10 % всей продукции, и по результатам можем, приняв во внимание ошибку репрезентативности, говорить о недоброкачественности всей продукции.

А если провести выборку 100 кондитерских изделий из неопределенной генеральной совокупности, где их на самом деле было, допустим, 1 млн единиц, то результат выборки и самого исследования будет критически неправдоподобным и неточным. Чувствуете разницу? Поэтому определенность генеральной совокупности в большинстве случаев крайне важна и очень сильно влияет на результат исследования.


Репрезентативность совокупности

Итак, теперь один из самых главных вопросов - какой должна быть выборка? Это самый главный момент исследования. На этом этапе необходимо рассчитать выборку и отобрать единицы из общего числа в нее. Совокупность была отобрана правильно, если определенные особенности и характеристики генеральной совокупности остается и в выборочной. Это называется репрезентативностью.

Иными словами, если после отбора часть сохраняет те же самые тенденции и особенности что и все количество исследуемого, то такая совокупность называется репрезентативной. Но не каждая определенная выборка может быть отобрана из репрезентативной совокупности. Бывают и такие объекты исследования, выборка которых просто не может быть репрезентативной. Отсюда и возникает понятие ошибки репрезентативности. Но об этом поговорим подробнее чуть больше.

Как сделать выборку

Итак, чтобы репрезентативность была максимальной, выделяют три основные правила выборки:

  1. Самым уникальным показателем числа выборки считается 20 %. Статистическая выборка в 20 % будет практически всегда давать результат максимально приближенный к действительности. В то же самое время нет необходимости переносить в собранную большую часть генеральной совокупности. 20 % выборки – это тот показатель, который выработан многими исследованиями. Приведем еще немного теории. Чем больше выборка, тем меньше ошибка репрезентативности и точнее результат исследования. Чем ближе будет выборочная совокупность к генеральной по количеству единиц, тем более точными и правильными будут результаты. Ведь если исследовать всю систему, тогда результат будет 100 %. Но здесь уже нет выборки. Это те исследования, в которых исследуется весь массив, все единицы, поэтому это нас не интересует.
  2. В случае нецелесообразности обработки 20 % генеральной совокупности допускается изучение единиц совокупности в количестве не менее 1001. Это также один из показателей исследования массива объекта исследования, который выработался со временем. Конечно же, он не даст точных результатов при больших массивах исследования, но максимально приблизит к возможной точности выборки.
  3. В статистике существует множество формул и сведенных таблиц. В зависимости от объекта исследования и от критерия выборки, существует целесообразность выбора той или иной формулы. Но этот пункт используется в сложных и многоэтапных исследованиях.

Погрешность (ошибка) репрезентативности

Главной характеристикой качества выбранной выборки является понятие «погрешности репрезентативности». Что же это такое? Это определенные расхождения между показателями выборочного и сплошного наблюдения. По показателям погрешности репрезентативность делят на надежную, обычную и приближенную. Иначе говоря, допустимыми являются отклонения в размере до 3 %, от 3 до 10 % и от 10 до 20 % соответственно. Хотя в статистике желательно, чтобы погрешность не превышал 5-6 %. В противном случае есть повод говорить о недостаточной репрезентативности выборки. Для вычисления погрешности репрезентативности и того, как она влияет на выборочную или генеральную совокупность, во внимание берутся многие факторы:

  1. Вероятность, с которой необходимо получить точный результат.
  2. Количества единиц выборочной совокупности. Как уже упоминалось ранее, чем меньше единиц составит выборка, тем больше будет ошибка репрезентативности, и наоборот.
  3. Однородность исследуемой совокупности. Чем более разнородной является совокупность, тем больше будет погрешность репрезентативности. Возможность совокупности быть репрезентативной зависит от однородности всех ее составляющих единиц.
  4. Способ отбора единиц в выборочную совокупность.

В конкретно заданных исследованиях процент погрешности среднего значения обычно задается самим исследователем на основании программы наблюдения и согласно данным ранее проведенных исследований. Как правило, считается допустимой предельная ошибка выборки (ошибка репрезентативности) в пределах 3-5 %.


Больше – не всегда лучше

Также стоит помнить, что главное при организации выборочного наблюдения - это доведение его объема до допустимого минимума. При этом не следует стремиться к чрезмерному уменьшению границ погрешности выборки, так как это может привести к неоправданному увеличению объема данных выборки и, следовательно, к повышению расходов на проведение выборочного наблюдения.

В то же время нельзя и чрезмерно увеличивать размер погрешности репрезентативности. Ведь в этом случае, хотя и произойдет уменьшение объема выборочной совокупности, это приведет к ухудшению достоверности полученных результатов.

Какие вопросы обычно ставится перед исследователем

Любое исследование если и проводится, то для какой-то цели и для получения каких-то результатов. При проведении выборочного исследования, как правило, ставятся начальные вопросы:

  1. Определение необходимого количества единиц выборочной совокупности, то есть то, сколько единиц будет исследоваться. К тому же, для точного исследования совокупность должна быть репрезентативной.
  2. Расчет погрешности репрезентативности с установленным уровнем вероятности. Сразу стоит отметить, что выборочных исследований не бывает с уровнем вероятности 100 %. Если та инстанция, которая проводила изучение определенного сегмента, утверждает, что их результаты точны с вероятностью 100 %, то это ложь. Многолетняя практика уже установила процент вероятности правильно проведенного выборочного исследования. Этот показатель равняется 95,4 %.

Способы отбора единиц исследования в выборку

Не каждая выборка является репрезентативной. Иногда один и тот же признак по-разному выражен в целом и в ее части. Для достижения требований репрезентативности целесообразным является использование различных приемов создания выборки. Причем использование того или иного способа зависит от конкретных обстоятельств. Среди таких приемов создания выборки выделяют:

  • случайный отбор;
  • механический отбор;
  • типичный отбор;
  • серийный (гнездовой) отбор.

Случайный отбор представляет собой систему мероприятий, направленных на случайный отбор единиц совокупности, когда вероятность попасть в выборку является равной для всех единиц генеральной совокупности. Этот прием целесообразно применять только в случае однородности и небольшого количества присущих ей признаков. В противном случае некоторые характерные черты рискуют быть не отраженным в выборке. Признаки случайного отбора лежат в основе всех других способов построения выборки.

При механическом отбор единиц проводится через определенный интервал. Если необходимо сформировать выборку конкретных преступлений, можно изымать из всех карточек статистического учета зарегистрированных преступлений каждую 5-ю, 10-ю или 15-ю карточку в зависимости от их общего количества и имеющихся размеров выборки. Недостатком этого способа является то, что перед отбором необходимо иметь полный учет единиц совокупности, затем нужно провести ранжирование и только после этого можно проводить выборку с определенным интервалом. Этот метод занимает много времени, поэтому он и не часто используется.


Типичный (районированный) отбор – вид выборки, при котором генеральную совокупность разделяют на однородные группы по определенному признаку. Иногда исследователи употребляют вместо «групп» другие термины: «районы» и «зоны». Затем из каждой группы в случайном порядке отбирается определенное количество единиц пропорционально удельному весу группы в общей совокупности. Типичный отбор часто осуществляется в несколько этапов.

Серийный отбор - это такой метод, при котором отбор единиц проводится группами (сериями) и обследованию подлежат все единицы отобранной группы (серии). Преимуществом этого способа является то, что иногда отобрать отдельные единицы сложнее, чем серии, например, при изучении личности, которая отбывает наказание. В рамках отобранных районов, зон применяется изучение всех единиц без исключения, например, изучение всех лиц, отбывающих наказание в каком-то определенном учреждении.


План

  • Введение
  • 1. Роль выборки
  • Заключение
  • Список литературы

Введение

Статистика - аналитическая наука, которая необходима всем современным специалистам. Современный специалист не может быть грамотным, если он не владеет статистической методологией. Статистика - важнейший инструмент связи предприятия с обществом. Статистика одна из важнейших дисциплин в учебном плане всех специальностей, т.к. статистическая грамотность - неотъемлемая составляющая высшего образования, а по количеству отведенных часов в учебном плане она занимает одно из первых мест. Работая с цифрами, каждый специалист должен знать, как получены те или иные данные, какова их природа исчисления, насколько они полны и достоверны.

1. Роль выборки

Множество всех единиц совокупности, обладающих определенным признаком и подлежащих изучению, носит в статистике название генеральной совокупности.

На практике по тем или иным причинам не всегда возможно или же нецелесообразно рассматривать всю генеральную совокупность. Тогда ограничиваются изучением лишь некоторой части ее, конечной целью которого является распространение полученных результатов на всю генеральную совокупность, т.е. применяют выборочный метод.

Для этого из генеральной совокупности особым образом отбирается часть элементов, так называемая выборка, и результаты обработки выборочных данных (например, средние арифметические значения) обобщаются на всю совокупность.

Теоретической основой выборочного метода является закон больших чисел. В силу этого закона при ограниченном рассеивании признака в генеральной совокупности и достаточно большой выборке с вероятностью, близкой к полной достоверности, выборочная средняя может быть сколь угодно близка к генеральной средней. Закон этот, включающий в себя группу теорем, доказан строго математически. Таким образом, средняя арифметическая, рассчитанная по выборке, может с достаточным основанием рассматриваться как показатель, характеризующий генеральную совокупность в целом.

2. Методы вероятностного отбора, обеспечивающие репрезентативность

Для того чтобы можно было по выборке делать вывод о свойствах генеральной совокупности, выборка должна быть репрезентативной (представительной), т.е. она должна полно и адекватно представлять свойства генеральной совокупности. Репрезентативность выборки может быть обеспечена только при объективности отбора данных.

Выборочная совокупность формируется по принципу массовых вероятностных процессов без каких бы то ни было исключений от принятой схемы отбора; необходимо обеспечить относительную однородность выборочной совокупности или ее разделение на однородные группы единиц. При формировании выборочной совокупности должно быть дано четкое определение единицы отбора. Желателен приблизительно одинаковый размер единиц отбора, причем результаты будут тем точнее, чем меньше единица отбора.

Возможны три способа отбора: случайный отбор, отбор единиц по определенной схеме, сочетание первого и второго способов.

Если отбор в соответствии с принятой схемой проводится из генеральной совокупности, предварительно разделенной на типы (слои или страты), то такая выборка называется типической (или расслоенной, или стратифицированной, или районированной). Еще одно деление выборки по видам определяется тем, что является единицей отбора: единица наблюдения или серия единиц (иногда используют термин "гнездо"). В последнем случае выборка называется серийной, или гнездовой. На практике часто используется сочетание типической выборки с отбором сериями. В математической статистике, обсуждая проблему отбора данных, обязательно вводят деление выборки на повторную и бесповторную. Первая соответствует схеме возвратного шара, вторая - безвозвратного (при рассмотрении процесса отбора данных на примере отбора шаров разного цвета из урны). В социально-экономической статистике нет смысла применять повторную выборку, поэтому, как правило, имеется в виду бесповторный отбор.

Так как социально-экономические объекты имеют сложную структуру, то выборку бывает довольно трудно организовать. Например, чтобы провести отбор домохозяйств при изучении потребления населением крупного города, легче произвести сначала отбор территориальных ячеек, жилых домов, потом квартир или домохозяйств, затем респондента. Такая выборка называется многоступенчатой. На каждой ступени используются разные единицы отбора: более крупные - на начальных ступенях, на последней ступени единица отбора совпадает с единицей наблюдения.

Еще один вид выборочного наблюдения - многофазовая выборка. Такая выборка включает определенное количество фаз, каждая из которых отличается подробностью программы наблюдения. Например, 25% всей генеральной совокупности обследуются по краткой программе, каждая 4-я единица из этой выборки обследуется по более полной программе и т.д.

При любом виде выборки отбор единиц производится тремя отмеченными способами. Рассмотрим процедуру случайного отбора. Прежде всего, составляется список единиц совокупности, в котором каждой единице присваивается цифровой код (номер или метка). Затем производится жеребьевка. Закладываются в барабан шары с соответствующими номерами, они перемешиваются и проводится отбор шаров. Выпавшие номера соответствуют единицам, попавшим в выборку; число номеров равно запланированному объему выборки.

Отбор жеребьевкой может быть подвержен смещениям, вызванным недостатками техники (качеством шаров, барабана) и другими причинами. Более надежен с точки зрения объективности отбор по таблице случайных чисел. Такая таблица содержит серии цифр, чередующихся случайным образом, отобранных путем электронных сигналов. Так как мы пользуемся десятичной цифровой системой 0, 1, 2,., 9, вероятность появления любой цифры равна 1/10. Следовательно, если бы нужно было создать таблицу случайных чисел, включающую 500 знаков, то из них около 50 были бы 0, столько же - 1 и т.д.

Часто используется отбор по какой-либо схеме (так называемая направленная выборка). Схема отбора принимается такой, чтобы отразить основные свойства и пропорции генеральной совокупности. Простейший способ: по спискам единиц генеральной совокупности, составленным так, чтобы упорядочивание единиц было бы не связано с изучаемыми свойствами, проводится механический отбор единиц с шагом, равным N: п. Обычно отбор начинают не с первой единицы, а отступив полшага, чтобы уменьшить возможность смещения выборки. Частота появления единиц с теми или иными особенностями, например студентов с тем или иным уровнем успеваемости, живущих в общежитии, и т.д. будет определяться той структурой, которая сложилась в генеральной совокупности.

Для большей уверенности в том, что выборка отразит структуру генеральной совокупности, последняя подразделяется на типы (страты или районы), и проводится случайный или механический отбор из каждого типа. Общее число единиц, отобранных из разных типов, должно соответствовать объему выборки.

Особые трудности возникают, когда нет списка единиц, а отбор нужно произвести либо на местности, либо из образцов продукции на складе готовой продукции. В этих случаях важно детально разработать схему ориентации на местности и схему отбора и следовать ей, не допуская отклонений. Например, счетчик имеет указание двигаться от определенной автобусной остановки на север по четной стороне улицы и, отсчитав два дома от первого угла, войти в третий и провести опрос в каждом 5-м жилом помещении. Неукоснительное следование принятой схеме обеспечивает выполнение главного условия формирования репрезентативной выборки - объективности отбора единиц.

От случайной выборки следует отличать квотный отбор, когда выборка конструируется из единиц определенных категорий (квот), которые должны быть представлены в заданных пропорциях. Например, при опросе покупателей универмага может быть запланировано провести отбор 150 респондентов, в том числе 90 женщин, из них 25 - девушек,20 - молодых женщин с маленькими детьми, 35 - женщин среднего возраста, одетых в деловой костюм, 10 - женщин 50 лет и старше; кроме того, планировался опрос 70 мужчин, из них 25 - подростков и юношей,20 - молодых мужчин с детьми, 15 - мужчин, которые одеты в костюмы, 10 - мужчин, одетых в спортивную одежду. Для определения потребительских ориентаций и предпочтений такая выборка, может быть, и хороша, но если мы захотим по ней установить среднюю сумму покупок, их структуру, мы получим непредставительные результаты. Это происходит потому, что квотная выборка нацелена на отбор определенных категорий.

Выборка может быть нерепрезентативной, даже если она формируется в соответствии с известными пропорциями генеральной совокупности, но отбор проводится без какой-либо схемы - единицы набираются как угодно, лишь бы обеспечить соотношение их категорий в тех же пропорциях, что и в генеральной совокупности (например, соотношение мужчин и женщин, респондентов в возрасте моложе и старше трудоспособного и в трудоспособном и т.д.).

Эти замечания должны предостеречь вас от подобных подходов к формированию выборки и еще раз подчеркнуть необходимость объективного отбора.

3. Организационные и методологические особенности случайной, механической, типической и серийной выборки

В зависимости от того, как осуществляется отбор элементов совокупности в выборку, различают несколько видов выборочного обследования. Отбор может быть случайным, механическим, типическим и серийным.

Случайным является такой отбор, при котором все элементы генеральной совокупности имеют равную возможность быть отобранными. Другими словами, для каждого элемента генеральной совокупности обеспечена равная вероятность попасть в выборку.

выборка статистическая вероятностный случайный

Требование случайности отбора достигается на практике с помощью жребия или таблицы случайных чисел.

При отборе способом жеребьевки все элементы генеральной совокупности предварительно нумеруются и номера их наносятся на карточки. После тщательной перетасовки из пачки любым способом (подряд или в любом другом порядке) выбирается нужное число карточек, соответствующее объему выборки. При этом можно либо откладывать отобранные карточки в сторону (тем самым осуществляется так называемый бесповторный отбор), либо, вытащив карточку, записать ее номер и возвратить в пачку, тем самым давая ей возможность появиться в выборке еще раз (повторный отбор). При повторном отборе всякий раз после возвращения карточки пачка должна быть тщательно перетасована.

Способ жеребьевки применяется в тех случаях, когда число элементов всей изучаемой совокупности невелико. При большом объеме генеральной совокупности осуществление случайного отбора методом жеребьевки становится сложным. Более надежным и менее трудоемким в случае большого объема обрабатываемых данных является метод использования таблицы случайных чисел.

Механический отбор производится следующим образом. Если формируется 10% -ная выборка, т.е. из каждых десяти элементов должен быть отобран один, то вся совокупность условно разбивается на равные части по 10 элементов. Затем из первой десятки выбирается случайным образом элемент. Например, жеребьевка указала девятый номер. Отбор остальных элементов выборки полностью определяется указанной пропорцией отбора N номером первого отобранного элемента. В рассматриваемом случае выборка будет состоять из элементов 9, 19, 29 и т.д.

Механическим отбором следует пользоваться осторожно, так как существует реальная опасность возникновения так называемых систематических ошибок. Поэтому прежде чем делать механическую выборку, необходимо проанализировать изучаемую совокупность. Если ее элементы расположены случайным образом, то выборка, полученная механическим способом, будет случайной. Однако нередко элементы исходной совокупности бывают частично или даже полностью упорядочены. Весьма нежелательным для механического отбора является порядок элементов, имеющий правильную повторяемость, период которой может совпасть с периодом механической выборки.

Нередко элементы совокупности бывают упорядочены по величине изучаемого признака в убывающем или возрастающем порядке и не имеют периодичности. Механический отбор из такой совокупности приобретает характер направленного отбора, так как отдельные части совокупности оказываются представленными в выборке пропорционально их численности во всей совокупности, т.е. отбор направлен на то, чтобы сделать выборку представительной.

Другим видом направленного отбора является типический отбор. Следует отличать типический отбор от отбора типичных объектов. Отбор типичных объектов применялся в земской статистике, а также при бюджетных обследованиях. При этом отбор "типичных селений" или "типичных хозяйств" производился по некоторым экономическим признакам, например по размерам землевладения на двор, по роду занятий жителей и т.п. Отбор такого рода не может быть основой для применения выборочного метода, так как здесь не выполнено основное его требование - случайность отбора.

При собственно типическом отборе в выборочном методе совокупность разбивается на группы, однородные в качественном отношении, а затем уже внутри каждой группы производится случайный отбор. Типический отбор организовать сложнее, чем собственно случайный, так как необходимы определенные знания о составе и свойствах генеральной совокупности, но зато он дает более точные результаты.

При серийном отборе вся совокупность разбивается на группы (серии). Затем путем случайного или механического отбора выделяют определенную часть этих серий и производят их сплошную обработку. По сути дела, серийный отбор представляет собой случайный или механический отбор, осуществленный для укрупненных элементов исходной совокупности.

В теоретическом плане серийная выборка является самой несовершенной из рассмотренных. Для обработки материала она, как правило, не используется, но представляет определенные удобства при организации обследования, особенно в изучении сельского хозяйства. Например, ежегодные выборочные обследования крестьянских хозяйств в годы, предшествовавшие коллективизации, проводились способом серийного отбора. Историку полезно знать о серийной выборке, поскольку он может встретиться с результатами таких обследований.

Кроме описанных выше классических способов отбора в практике выборочного метода используются и другие способы. Рассмотрим два из них.

Изучаемая совокупность может иметь многоступенчатую структуру, она может состоять из единиц первой ступени, которые, в свою очередь, состоят из единиц второй ступени, и т.д. Например, губернии включают в себя уезды, уезды можно рассматривать как совокупность волостей, волости состоят из сел, а села - из дворов.

К таким совокупностям можно применять многоступенчатый отбор, т.е. последовательно осуществлять отбор на каждой ступени. Так, из совокупности губерний механическим, типическим или случайным способом можно отобрать уезды (первая ступень), затем одним из указанных способов выбрать волости (вторая ступень), далее провести отбор сел (третья ступень) и, наконец, дворов (четвертая ступень).

Примером двухступенчатого механического отбора может служить давно практикуемый отбор бюджетов рабочих. На первой ступени механически выбираются предприятия, на второй - рабочие, бюджет которых обследуется.

Изменчивость признаков исследуемых объектов может быть различной. Например, обеспеченность крестьянских хозяйств собственной рабочей силой колеблется меньше, чем, скажем, размеры их посевов. В связи с этим меньшая по объему выборка по обеспеченности рабочей силой будет столь же представительной, как и большая по числу элементов выборка данных о размерах посевов. В этом случае из выборки, по которой определяются размеры посевов, можно сделать под выборку, достаточно репрезентативную для определения обеспеченности рабочей силой, осуществив тем самым двухфазный отбор. В общем случае можно добавить и следующие фазы, т.е. из полученной подвыборки сделать еще подвыборку и т.д. Этот же способ отбора применяется в тех случаях, когда цели исследования требуют различной точности при исчислении разных показателей.

Задание 1. Описательная статистика

На экзамене 20 студентов получили следующие оценки (по 100 бальной шкале):

1) Построить ряд распределения частот, относительных и накопленных частот для 5 интервалов;

2) Построить полигон, гистограмму и кумулятивный полигон;

3) Найти среднюю арифметическую, моду, медиану, первый и третий квартили, межквартальный размах, стандартное отклонение и коэффициенты вариации. Проанализировать данные с использованием этих характеристик и указать интервал, включающий 50% центральных значений указанных величин.

1) x (min) =53, x (max) =98

R=x (max) - x (min) =98-53=45

h=R/1+3.32lgn, где n - объем выборки, n=20

h= 45/1+3.32*lg20= 9

a (i) - нижняя граница интервала, b (i) - верхняя граница интервала.

a (1) = x (min) - h/2, b (1) = a (1) +h, тогда, если b (i) - верхняя граница i-го интервала (причем a (i+1) =b (i)), то b (2) =a (2) +h, b (3) =a (3) +h и т.д. Построение интервалов продолжается до тех пор, пока начало следующего по порядку интервала не будет равно или больше x (max).

a (1) = 47.5 b (1) = 56.5

a (2) = 56.5 b (2) = 65.5

a (3) = 65.5 b (3) = 74.5

a (4) = 74.5 b (4) = 83.5

a (5) = 83.5 b (5) = 92.5

a (6) = 92.5 b (6) = 101.5

Интервалы, a (i) - b (i)

Подсчет частот

Частота, n (i)

Накопленная частота, n (hi)

2) Для построения графиков запишем вариационные ряды распределения (интервальный и дискретный) относительных частот W (i) = n (i) /n, накопленных относительных частот W (hi) и найдем отношение W (i) /h, заполнив таблицу.

x (i) =a (i) +b (i) /2; W (hi) =n (hi) /n

Статистический ряд распределения оценок:

Интервалы, a (i) - b (i)

Для построения гистограммы относительных частот по оси абсцисс откладываем частичные интервалы, на каждом из которых строим прямоугольник, площадь которого равна относительной частоте W (i) данного i-го интервала. Тогда высота элементарного прямоугольника должна быть равна W (i) /h.

Из гистограммы можно получить полигон того же распределения, если середины верхних оснований прямоугольников соединить отрезками прямой.

Для построения кумуляты дискретного ряда по оси абсцисс откладываем значения признака, а по оси ординат - относительные накопленные частоты W (hi). Полученные точки соединяем отрезками прямых. Для интервального ряда по оси абсцисс откладываем верхние границы группировки.

3) Среднее арифметическое значение находим по формуле:

Мода рассчитывается по формуле:

Нижняя граница модального интервала; h - ширина интервала группировки; - частота модального интервала; - частота интервала, предшествующего модальному; - частота интервала, следующего за модальным. = 23,125.

Найдем медиану:

n=20: 53,58,59,59,63,67,68,69,71,73,78,79,85,86,87,89,91,91,98,98

Подставив значения, получаем: Q1=65;

Значение второго квартиля совпадает со значением медианы, поэтому Q2=75.5; Q3= 88.

Межквартальный размах равен:

Среднеквадратическое (стандартное) отклонение находим по формуле:

Коэффициент вариации:

Из данных расчетов видно, что 50% центральных значений указанных величин включает в себя интервал 74,5 - 83,5.

Задание 2. Статистическая проверка гипотез.

Предпочтения в спорте для мужчин, женщин и подростков следующие:

Проверить гипотезу о независимости предпочтения от пола и возраста б = 0,05.

1) Проверка гипотезы о независимости предпочтений в спорте.

Коэффициент Пирсена:

Табличное значение критерия хи-квадрат со степенью свободы 4 при б = 0,05 равно ч 2 табл =9,488.

Так как, то гипотеза отвергается. Различия в предпочтениях существенные.

2. Гипотеза о соответствии.

Волейбол как вид спорта ближе всего к баскетболу. Проверим соответствие в предпочтениях для мужчин, женщин и подростков.

Ф 2 =0.1896+0.1531+0.1624+0.1786+0.1415+0.1533 = 0.979.

При уровне значимости б = 0,05 и степени свободы k = 2 табличное значение ч 2 табл =9,210.

Так как Ф 2 >, то различия в предпочтениях существенные.

Задание 3. Корреляционно-регрессионный анализ.

Анализ дорожно-транспортных происшествий дал следующую статистику относительно процента водителей, моложе 21 года и числа происшествий с тяжелыми последствиями на 1000 водителей:

Провести графический и корреляционно-регрессионный анализ данных, спрогнозировать число ДТП с тяжелыми последствиями для города, в котором число водителей, моложе 21 года равно 20% от общего числа водителей.

Получаем выборку объема n = 10.

x - процент водителей моложе 21 года,

y - число происшествий на 1000 водителей.

Уравнение линейной регрессии имеет вид:

Последовательно вычисляем:

Аналогично находим

Выборочный коэффициент регрессии

Связь между x, y сильная.

Уравнение линейной регрессии принимает вид:

На рисунке представлено поле рассеяния и график линейной регрессии . Проводим прогноз для x n =20 .

Получаем y n =0 .2 9*20-1 .4 6 = 4 .3 4 .

Прогнозное значение получилось больше всех значений, представленный в исходной таблице . Это следствие того, что корреляционная зависимость прямая и коэффициент равен 0,29 достаточно большой . На каждую единицу приращения Дx он дает приращение Дy =0 .3

Задание 4 . Анализ временных рядов и прогнозирование .

Спрогнозировать значения индексов на ближайшую неделю, используя:

а) метод скользящей средней, выбрав для ее вычисления трехнедельные данные;

б) экспоненциальную взвешенную среднюю, выбрав в качестве б=0,1.

Из таблицы случайных чисел находим номера 41, 51, 69, 135, 124, 93, 91, 144, 10, 24.

Располагаем их в порядке возрастания: 10, 24, 41, 51, 69, 91, 93, 124, 135, 144.

Проводим новую нумерацию от 1 до 10. Получаем исходные данные для десяти недель:

Экспоненциальное сглаживание при б = 0,1 дает только одно значение.

Для середины всего срока получаем три прогноза: 12,855; 1309; 12,895.

Наблюдается согласование этих прогнозов.

Задание 5 . Индексный анализ .

Компания занимается перевозкой грузов. Имеются данные за ряд лет по объемам перевозки 4-х видов грузов и стоимости перевозки единицы груза.

Определите простые индексы цен, количества и стоимости для каждого вида продукта, а также индексы Ласпейреса и Паше и индекс стоимости. Прокомментируйте полученные результаты содержательно.

Решение. Вычислим простые индексы:

Индекс Ласпейреса:

Индекс Паше:

Индеек стоимости:

Индивидуальные индексы указывают на разнобой в изменении цен и количеств по грузам А, В, С, Д. Агрегатные индексы указывают на общие тенденции изменения. В целом стоимость перевозимых грузов уменьшилась на 13%. Причина в том, что самый дорогой груз уменьшился на 42% по количеству, а его тариф почти не изменился.

Годы 16-20 нумеруем по порядку от 1 до 5. Исходные данные принимают вид:

Сначала исследуем динамику количества груза А.

Показатель

Абсолютные приросты

Темпы роста, %

Темпы прироста, %

При этом темпы роста усреднялись по формулам :

, .

Для темпа прироста в любом случае Т пр р -1 .

Теперь рассматриваем груз Д .

Показатель

Абсолютные приросты

Темпы роста, %

Темпы прироста, %

Заключение

Средние величины и их разновидности в статистике играют большую роль. Средние показатели широко применяются в анализе, так как именно в них находят свое проявление закономерности массовых явлений и процессов как во времени, так и в пространстве. Так, например, закономерность повышения производительности труда находит свое выражение в статистических показателях роста средней выработки на одного работающего в промышленности, закономерность неуклонного роста уровня благосостояния населения проявляется в статистических показателях увеличения средних доходов рабочих и служащих и т.д.

Широкое применение имеют такие описательные характеристики распределения варьирующего признака как мода и медиана. Они являются конкретными характеристиками, их значение имеет какая-либо конкретная варианта в вариационном ряду.

Так, чтобы охарактеризовать наиболее часто встречающуюся величину признака, применяют моду, а чтоб показать количественную границу значения варьирующего признака, которую достигла половина членов совокупности - медиану.

Таким образом, средние величины помогают изучать закономерности развития промышленности, конкретной отрасли, общества и страны в целом.

Список литературы

1. Теория статистики: Учебник / Р.А. Шмойлова, В.Г. Минашкин, Н.А. Садовникова, Е.Б. Шувалова; Под ред.Р.А. Шмойловой. - 4-е изд., перераб. и доп. - М.: Финансы и статистика, 2005. - 656с.

2. Гусаров В.М. Статистика: Учебное пособие для вузов. - М.: ЮНИТИ-ДАНА, 2001.

4. Сборник задач по теории статистики: Учебное пособие/ Под ред. проф.В. В. Глинского и к. э. н., доц.Л.К. Серга. Изд. З-е. - М.: ИНФРА-М; Новосибирск: Сибирское соглашение, 2002.

5. Статистика: Учебное пособие/Харченко Л-П., Долженкова В.Г., Ионин В.Г. и др., Под ред. В.Г. Ионина. - Изд.2-е, перераб. и доп. - М.: ИНФРА-М. 2003.

Подобные документы

    Дескриптивная статистика и статистический вывод. Способы отбора, обеспечивающие репрезентативность выборки. Влияние вида выборки на величину ошибки. Задачи при применении выборочного метода. Распространение данных наблюдения на генеральную совокупность.

    контрольная работа , добавлен 27.02.2011

    Выборочный метод и его роль. Развитие современной теории выборочного наблюдения. Типология методов отбора. Способы практической реализации простой случайной выборки. Организация типической (стратифицированной) выборки. Объем выборки при квотном отборе.

    доклад , добавлен 03.09.2011

    Цель выборочного наблюдения и формирование выборки. Особенности организации различных видов выборочного наблюдения. Ошибки выборочного отбора и методы их расчета. Применение выборочного метода для анализа предприятий топливно-энергетического комплекса.

    курсовая работа , добавлен 06.10.2014

    Выборочное наблюдение как метод статистического исследования, его особенности. Случайный, механический, типический и серийный виды отбора при образовании выборочных совокупностей. Понятие и причины возникновения ошибки выборки, методы ее определения.

    реферат , добавлен 04.06.2010

    Понятие и роль статистики в механизме управления современной экономикой. Сплошное и несплошное статистическое наблюдение, описание выборочного метода. Виды отбора при выборочном наблюдении, ошибки выборки. Производственные и финансовые показатели.

    курсовая работа , добавлен 17.03.2011

    Изучение выполнения плана. Десятипроцентное выборочное обследование по методу случайного бесповторного отбора. Себестоимость продукции завода. Предельная ошибка выборки. Динамика средних цен и объема продажи продукта. Индекс цен переменного состава.

    контрольная работа , добавлен 09.02.2009

    Получение выборки объема n-нормального распределения случайной величины. Нахождение числовых характеристик выборки. Группировка данных и вариационный ряд. Гистограмма частот. Эмпирическая функция распределения. Статистическое оценивание параметров.

    лабораторная работа , добавлен 31.03.2013

    Сущность понятий выборки и выборочного наблюдения, основные виды и категории отбора. Определение объема и численности выборки. Практическое применение статистического анализа выборочного наблюдения. Расчет ошибок выборочной доли и выборочной средней.

    курсовая работа , добавлен 17.02.2015

    Понятие о выборочном наблюдении. Ошибки репрезентативности, измерение ошибки выборки. Определение необходимой численности выборки. Применение выборочного метода вместо сплошного. Дисперсия в генеральной совокупности и сопоставление показателей.

    контрольная работа , добавлен 23.07.2009

    Виды отбора и ошибки наблюдения. Способы отбора единиц в выборочную совокупность. Характеристика коммерческой деятельности предприятия. Выборочное обследование потребителей продукции. Распространение характеристик выборки на генеральную совокупность.

Понравилась статья? Поделитесь ей