Контакты

Определение генетического кода. Вырожденность генетического кода: общие сведения

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.
Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.
Нуклеиновые кислоты входят в состав важнейшего органа клетки - ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима служба доставки закодированного плана из ядра к месту синтеза. Такую службу доставки исполняют молекулы РНК.

Процесс начинается в ядре клетки: раскручивается и открывается часть «лестницы» ДНК. Благодаря этому буквы РНК образуют связи с открытыми буквами ДНК одной из нитей ДНК. Фермент переносит буквы РНК, чтобы соединить их в нить. Так буквы ДНК «переписываются» в буквы РНК. Новообразованная цепочка РНК отделяется, и «лестница» ДНК снова закручивается. Процесс считки информации с ДНК и синтеза по ее матрице РНК называется транскрипцией , а синтезированная РНК называется информационной или и-РНК .

После дальнейших изменений этот вид закодированной и-РНК готов. и-РНК выходит из ядра и направляется к месту синтеза белка, где буквы и-РНК расшифровываются. Каждый набор из трех букв и-РНК образует «букву», обозначающее одну конкретную аминокислоту.

Другой вид РНК отыскивает эту аминокислоту, захватывает ее с помощью фермента и доставляет к месту синтеза белка. Эта РНК называется транспортной, или т-РНК. По мере прочтения и перевода сообщения и-РНК цепочка аминокислот растет. Эта цепочка закручивается и укладывается в уникальную форму, создавая один вид белка. Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все варианты укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 1027 (!) лет. А для образования в организме цепочки из 20 аминокислот требуется не более одной секунды, и этот процесс происходит непрерывно во всех клетках тела.

Гены, генетический код и его свойства.

На Земле живет около 7 млрд людей. Если не считать 25-30 млн пар однояйцовых близнецов, то генетически все люди разные : каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются различиями в генотипах -наборах генов организма; у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках - следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Это не означает , что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы .

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК, гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип . Таким образом,

Ген – единица наследственной информации организма, которой соответствует отдельный участок ДНК

Кодирование наследственной информации происходит с помощью генетического кода , который универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов.

Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).

Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК , т.к. она снимает информацию с ДНК (процесс транскрипции ) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции ).
В состав и-РНК входят нуклеотиды А-Ц-Г-У, триплеты которых называются кодонами : триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ. Именно кодонами и-РНК отражается генетический код в записи.

Таким образом, генетический код - единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов . Генетический код основан на использовании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода:

1. Генетический код триплетен . Триплет (кодон) - последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав белков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот остаются незакодированными ). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, должно быть не менее трех. В этом случае число возможных триплетов нуклеотидов составляет 43 = 64.

2. Избыточность (вырожденность ) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими триплетами (поскольку аминокислот 20, а триплетов - 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты выполняют специфические функции: в молекуле и-РНК триплеты УАА, УАГ, УГА - являются терминирующими кодонами, т. е. стоп -сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Однозначность кода - одновременно с избыточностью коду присуще свойство однозначности : каждому кодону соответствует только одна определенная аминокислота.

4. Коллинеарность кода, т.е. последовательность нуклеотидов в гене точно соответствует последовательности аминокислот в белке.

5. Генетический код неперекрываем и компактен , т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп -сигналов (терминирующих кодонов ).

6. Генетический код универсален , т. е. ядерные гены всех организмов одинаковым образом кодируют информацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

Существуют таблицы генетического кода для расшифровки кодонов и- РНК и построения цепочек белковых молекул.

Реакции матричного синтеза.

В живых системах встречается реакции, неизвестные в неживой природе - реакции матричного синтеза.

Термином "матрица" в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.

Матричный принцип лежит в основе важнейших синтетических реакций клетки, та-ких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.

Здесь происходит направленное стягивание мономеров в определенное место клетки - на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно. Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК .

Мономерные молекулы , из которых синтезируется полимер, - нуклеотиды или аминокислоты - в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.

Затем происходит "сшивание" мономерных звеньев в полимерную цепь , и готовый полимер сбрасывается с матрицы.

После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти "сборка" только какого-то одного полимера.

Матричный тип реакций - специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого - его способности к воспроизведению себе подобного.

Реакции матричного синтеза

1. Репликация ДНК - реплика́ция (от лат. replicatio - возобновление) - процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков, называемый реплисомой . Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток. Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов. Молекула ДНК способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.
Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.

Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться - процесс устранения ошибок называется репарацией . Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

2. Транскрипция (от лат. transcriptio - переписывание) - процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. РНК-полимераза движется по молекуле ДНК в направлении 3" → 5". Транскрипция состоит из стадий инициации, элонгации и терминации . Единицей транскрипции является оперон, фрагмент молекулы ДНК, состоящий из промотора, транскрибируемой части и терминатора . и-РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности при участии фермента, который активирует начало и конец синтеза молекулы и-РНК.

Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

3. Трансляция (от лат. translatio - перенос, перемещение) - процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой. Иными словами, это процесс перевода информации, со-держащейся в последовательности нуклеотидов и-РНК, в последовательность амино-кислот в полипептиде.

4. Обратная транскрипция - это процесс образования двуцепочечной ДНК на основании информации из одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении. Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии, которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки.

Однако в 1970 году Темин и Балтимор независимо друг от друга открыли фермент, названный обратной транскриптазой (ревертазой) , и возможность обратной транскрипции была окончательно подтверждена. В 1975 году Темину и Балтимору была присуждена Нобелевская премия в области физиологии и медицины. Некоторые вирусы (такие как вирус иммунодефицита человека, вызывающий ВИЧ-инфекцию), имеют возможность транскрибировать РНК в ДНК. ВИЧ имеет РНК-геном, который встраивается в ДНК. В результате, ДНК вируса может быть объединена с геномом клетки-хозяина. Главный фермент, ответственный за синтез ДНК из РНК, называется ревертазой . Одной из функций ревертазы является создание комплементарной ДНК (кДНК) из вирусного генома. Ассоциированный фермент рибонуклеаза расщепляет РНК, а ревертаза синтезирует кДНК из двойной спирали ДНК. кДНК интегрируется в геном клетки-хозяина с помощью интегразы. Результатом является синтез вирусных протеинов клеткой-хозяином , которые образуют новые вирусы. В случае с ВИЧ так же программируется апоптоз (смерть клетки) Т-лимфоцитов. В иных случаях клетка может остаться распространителем вирусов.

Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы.

Таким образом, биосинтез белка – это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

Молекулы белков по существу представляют собой полипептидные цепочки , составленные из отдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собой самостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка, аминокислоты должны активироваться . Эта активация происходит под действием особых ферментов.

В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК . Каждой аминокислоте соответствует строго специфическая т-РНК , которая находит «свою» аминокислоту и переносит ее в рибосому.

Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК . Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот.

Одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал » от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок.

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника – матричной или информационной РНК (м-РНК или и-РНК ), которая синтезируется в ядр е под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК. Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план - в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и- РНК и далее на белок .

Молекула и-РНК поступает в рибосому и прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный кодоном (триплет) , взаимо-действует совершенно специфично с подходящим к нему по строению триплетом (антикодоном) в транспортной РНК, которая принесла в рибосому аминокислоту.

Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и- РНК присоединяется другая т-РНК с другой аминокислотой и так до тех пор, пока не будет считана вся цепочка и-РНК, пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка. А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы.

Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому. В процессе синтеза белка участвует одновременно не одна, а несколько рибосом - полирибосомы.

Основные этапы передачи генетической информации:

1. Синтез на ДНК как на матрице и-РНК (транскрипция)
2. Синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция) .

Этапы универсальны для всех живых существ, но временные и пространственные взаимоотношения этих процессов различаются у про- и эукариотов.

У прокариот транскрипция и трансляция могут осуществляться одновременно, поскольку ДНК находится в цитоплазме. У эукариот транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану. Затем в цитоплазме РНК транспортируются к месту синтеза белка.

Каждый живой организм обладает особым набором белков. Определенные соединения нуклеотидов и их последовательность в молекуле ДНК образуют генетический код. Он передает информацию о строении белка. В генетике была принята определенная концепция. Согласно ей, одному гену соответствовал один фермент (полипептид). Следует сказать, что исследования о нуклеиновых кислотах и белках проводились в течение достаточно продолжительного периода. Далее в статье подробнее рассмотрим генетический код и его свойства. Будет также приведена краткая хронология исследований.

Терминология

Генетический код - это способ зашифровки последовательности белков аминокислот с участием нуклеотидной последовательности. Этот метод формирования сведений характерен для всех живых организмов. Белки - природные органические вещества с высокой молекулярностью. Эти соединения также присутствуют в живых организмах. Они состоят из 20 видов аминокислот, которые называются каноническими. Аминокислоты выстроены в цепочку и соединены в строго установленной последовательности. Она определяет структуру белка и его биологические свойства. Встречается также несколько цепочек аминокислот в белке.

ДНК и РНК

Дезоксирибонуклеиновая кислота - это макромолекула. Она отвечает за передачу, хранение и реализацию наследственной информации. ДНК использует четыре азотистых основания. К ним относятся аденин, гуанин, цитозин, тимин. РНК состоит из тех же нуклеотидов, кроме того из них, в составе которого находится тимин. Вместо него присутствует нуклеотид, содержащий урацил (U). Молекулы РНК и ДНК представляют собой нуклеотидные цепочки. Благодаря такой структуре образовываются последовательности - "генетический алфавит".

Реализация информации

Синтез белка, который кодируется геном, реализовывается при помощи объединения мРНК на матрице ДНК (транскрипции). Также происходит передача генетического кода в последовательность аминокислот. То есть имеет место синтез полипептидной цепи на мРНК. Для зашифровки всех аминокислот и сигнала окончания белковой последовательности достаточно 3-х нуклеотидов. Эта цепь называется триплетом.

История исследования

Изучение белка и нуклеиновых кислот проводилось длительное время. В середине 20 века, наконец, появились первые идеи о том, какую природу имеет генетический код. В 1953 году выяснили, что некоторые белки состоят из последовательностей аминокислот. Правда, тогда еще не могли определить их точное количество, и по этому поводу велись многочисленные споры. В 1953 году авторами Уотсоном и Криком было опубликовано две работы. Первая заявляла о вторичной структуре ДНК, вторая говорила о ее допустимом копировании при помощи матричного синтеза. Кроме того, был сделан акцент на то, что конкретная последовательность оснований - это код, несущий наследственную информацию. Американский и советский физик Георгий Гамов допустил гипотезу кодирования и нашел метод ее проверки. В 1954 году была опубликована его работа, в ходе которой он выдвинул предложение установить соответствия между боковыми аминокислотными цепями и "дырами", имеющими ромбообразную форму, и использовать это как механизм кодирования. Потом его назвали ромбическим. Разъясняя свою работу, Гамов допустил, что генетический код может являться триплетным. Труд физика стал одним из первых среди тех, которые считались близкими к истине.

Классификация

По истечении нескольких лет предлагались различные модели генетических кодов, представляющие собой два вида: перекрывающиеся и неперекрывающиеся. В основе первой было вхождение одного нуклеотида в состав нескольких кодонов. К ней принадлежит треугольный, последовательный и мажорно-минорный генетический код. Вторая модель предполагает два вида. К неперекрывающимся относятся комбинационный и "код без запятых". В основе первого варианта лежит кодировка аминокислоты триплетами нуклеотидов, и главным является его состав. Согласно "коду без запятых", определенные триплеты соответствуют аминокислотам, а остальные нет. В этом случае считалось, что при расположении любых значащих триплетов последовательно другие, находящиеся в иной рамке считывания, получатся ненужными. Ученые полагали, что существует возможность подбора нуклеотидной последовательности, которая будет удовлетворять этим требованиям, и что триплетов ровно 20.

Хотя Гамов с соавторами ставили под сомнение такую модель, она считалась наиболее правильной на протяжении следующих пяти лет. В начале второй половины 20-го века появились новые данные, которые позволили обнаружить некоторые недочеты в "коде без запятых". Было выявлено, что кодоны способны провоцировать синтез белка в пробирке. Ближе к 1965 году осмыслили принцип всех 64 триплетов. В результате обнаружили избыточность некоторых кодонов. Другими словами, последовательность аминокислот кодируется несколькими триплетами.

Отличительные особенности

К свойствам генетического кода относятся:

Вариации

Впервые отклонение генетического кода от стандартного было обнаружено в 1979 году во время изучения генов митохондрий в организме человека. Далее выявили еще подобные варианты, в том числе множество альтернативных митохондриальных кодов. К ним относятся расшифровка стоп-кодона УГА, используемого в качестве определения триптофана у микоплазм. ГУГ и УУГ у архей и бактерий нередко применяются в роли стартовых вариантов. Иногда гены кодируют белок со старт-кодона, отличающийся от стандартно используемого этим видом. Кроме того, в некоторых белках селеноцистеин и пирролизин, которые являются нестандартными аминокислотами, вставляются рибосомой. Она прочитывает стоп-кодон. Это зависит от последовательностей, находящихся в мРНК. В настоящее время селеноцистеин считается 21-ой, пирролизан - 22-ой аминокислотой, присутствующей в составе белков.

Общие черты генетического кода

Однако все исключения являются редкостью. У живых организмов в основном генетический код имеет ряд общих признаков. К ним относятся состав кодона, в который входят три нуклеотида (два первых принадлежат к определяющим), передача кодонов тРНК и рибосомами в аминокислотную последовательность.

Генетический код - это особенная шифровка наследственной информации с помощью молекул Основываясь на этой гены соответствующе управляют синтезом белков и ферментов в организме, определяя тем самым обмен веществ. В свою очередь, строение отдельных белков и их функции обуславливается расположением и составом аминокислот - структурных единиц молекулы белка.

В середине прошлого века были выявлены гены, которые являются отдельными участками (сокращенно - ДНК). Звенья нуклеотидов образуют в характерную двойную цепь, собранную в форме спирали.

Ученые нашли связь между генами и химической структурой отдельных белков, сущность которой состоит в том, что структурный порядок расположения аминокислот в молекулах белка полностью соответствует порядку нуклеотидов в гене. Установив эту связь, ученые решили расшифровать генетический код, т.е. установить законы соответствия структурных порядков нуклеотидов в ДНК и аминокислот в белках.

Существует всего четыре типа нуклеотидов:

1) А - адениловые;

2) Г - гуаниловые;

3) Т - тимидиловые;

4) Ц - цитидиловые.

В состав белков входит двадцать видов основных аминокислот. С расшифровкой генетического кода возникли трудности, поскольку нуклеотидов гораздо меньше, чем аминоскислот. При решении этой проблемы было высказано предположение, что аминокислоты кодируются различными сочетаниями из трех нуклеотидов (так называемым кодоном или триплетом).

Кроме того, необходимо было объяснить, как именно располагаются триплеты вдоль гена. Так возникли три основные группы теорий:

1) триплеты следуют друг за другом непрерывно, т.е. формируют сплошной код;

2) триплеты располагаются с чередованием «бессмысленных» участков, т.е. формируются так называемые «запятые» и «абзацы» в коде;

3) триплеты могут перекрываться, т.е. конец первого триплета может формировать начало следующего.

В настоящее время в основном используют теорию о непрерывности кода.

Генетический код и его свойства

1) Код триплетен - он состоит из произвольных сочетаний трех нуклеотидов, которые образуют кодоны.

2) Генетический код избыточен - его триплетности. Одна аминокислота может быть закодирована несколькими кодонами, поскольку кодонов, по математическим подсчетам, в три раза больше, чем аминокислот. Некоторые кодоны выполняют определенные терминирующие функции: одни могут быть «стоп-сигналами», которые программируют окончание производства аминокислотной цепи, а другие могут обозначать инициирование считывания кода.

3) Генетический код однозначен - каждому из кодонов может соответствовать только одна аминокислота.

4) Генетический код обладает коллинеарностью, т.е. последовательность нуклеотидов и последовательность аминокислот четко соответствуют друг другу.

5) Код записан непрерывно и компактно, «бессмысленные» нуклеотиды в нем отсутствуют. Он начинается определенным триплетом, который сменяется следующим без перерыва и заканчивается терминирующим кодоном.

6) Генетический код обладает универсальностью - гены любого организма кодируют информацию о белках абсолютно одинаково. Это не зависит от уровня сложности организации организма или его системного положения.

Современная наука предполагает, что генетический код возникает непосредственно при зарождении нового организма из костной материи. Случайные изменения и процессы эволюции делают возможными любые варианты кода, т.е. аминокислоты могут переставляться в любой последовательности. Почему в ходе эволюции выжил именно такой вид кода, почему код универсален и имеет подобную структуру? Чем больше наука узнает о феномене генетического кода, тем больше возникает новых загадок.

Генетический код - это способ кодирования последовательности аминокислот в молекуле белка с помощью последовательности нуклеотидов в молекуле нуклеиновой кислоты. Свойства генетического кода вытекают из особенностей этого кодирования.

Каждой аминокислоте белка сопоставляется в соответствие три подряд идущих нуклеотида нуклеиновой кислоты - триплет , или кодон . Каждый из нуклеотидов может содержать одно из четырех азотистых оснований. В РНК это аденин (A), урацил (U), гуанин (G), цитозин (C). По-разному комбинируя азотистые основания (в данном случае содержащие их нуклеотиды) можно получить множество различных триплетов: AAA, GAU, UCC, GCA, AUC и т. д. Общее количество возможных комбинаций - 64, т. е. 4 3 .

В состав белков живых организмов входит около 20 аминокислот. Если бы природа «задумала» кодировать каждую аминокислоту не тремя, а двумя нуклеотидами, то разнообразия таких пар не хватило бы, так как их оказалось бы всего 16, т.е. 4 2 .

Таким образом, основное свойство генетического кода - его триплетность . Каждая аминокислота кодируется тройкой нуклеотидов.

Поскольку возможных разных триплетов существенно больше, чем используемых в биологических молекулах аминокислот, то в живой природе было реализовано такое свойство как избыточность генетического кода. Многие аминокислоты стали кодироваться не одним кодоном, а несколькими. Например, аминокислота глицин кодируется четырьмя различными кодонами: GGU, GGC, GGA, GGG. Избыточность также называют вырожденностью .

Соответствие между аминокислотами и кодонами отражают в виде таблиц. Например, таких:

По отношению к нуклеотидам генетический код обладает таким свойством как однозначность (или специфичность ): каждый кодон соответствует только одной аминокислоте. Например, кодоном GGU можно закодировать только глицин и больше никакую другую аминокислоту.

Еще раз. Избыточность - это про то, что несколько триплетов могут кодировать одну и ту же аминокислоту. Специфичность - каждый конкретный кодон может кодировать только одну аминокислоту.

В генетическом коде нет специальных знаков препинания (если не считать стоп-кодонов, обозначающих окончание синтеза полипептида). Функцию знаков препинания выполняют сами триплеты - окончание одного обозначает, что следом начнется другой. Отсюда следуют следующие два свойства генетического кода: непрерывность и неперекрываемость . Под непрерывность понимают считывание триплетов сразу друг за другом. Под неперекрываемостью - то, что каждый нуклеотид может входить в состав только одного триплета. Так первый нуклеотид следующего триплета всегда стоит после третьего нуклеотида предшествующего триплета. Кодон не может начаться со второго или третьего нуклеотида предшествующего кодона. Другими словами, код не перекрывается.

Генетический код обладает свойством универсальности . Он един для всех организмов на Земле, что говорит о единстве происхождения жизни. При этом встречаются очень редкие исключения. Например, некоторые триплеты митохондрий и хлоропластов кодируют другие, а не обычные для них, аминокислоты. Это может говорить о том, что на заре развития жизни существовали немного различные вариации генетического кода.

Наконец, генетический код обладает помехоустойчивостью , которая является следствием такого его свойства как избыточность. Точечные мутации , иногда происходящие в ДНК , обычно приводят к замене одного азотистого основания на другое. При этом изменяется триплет. Например, было AAA, после мутации стало AAG. Однако подобные изменения не всегда приводят к изменению аминокислоты в синтезируемом полипептиде, так как оба триплета из-за свойства избыточности генетического кода могут соответствовать одной аминокислоте. Учитывая, что мутации чаще вредны, свойство помехоустойчивости полезно.

Наследственная информация – это информация о строении белка (информация о том, какие аминокислоты в каком порядке соединять при синтезе первичной структуры белка).


Информация о строении белков закодирована в ДНК, которая у эукариот входит в состав хромосом и находится в ядре. Участок ДНК (хромосомы), в котором закодирована информация об одном белке, называется ген .


Транскрипция - это переписывание информации с ДНК на иРНК (информационную РНК). иРНК переносит информацию из ядра в цитоплазму, к месту синтеза белка (к рибосоме).


Трансляция - это процесс биосинтеза белка. Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома пептидной связью соединяет между собой аминокислоты, принесенные тРНК, получается белок.


Реакции транскрипции, трансляции, а так же репликации (удвоения ДНК) являются реакциями матричного синтеза . ДНК служит матрицей для синтеза иРНК, иРНК служит матрицей для синтеза белка.


Генетический код - это способ, с помощью которого информация о строении белка записана в ДНК.

Свойства генкода

1) Триплетность : одна аминокислота кодируется тремя нуклеотидами. Эти 3 нуклеотида в ДНК называются триплет, в иРНК - кодон, в тРНК - антикодон (но в ЕГЭ может быть и «кодовый триплет» и т.п.)


2) Избыточность (вырожденность): аминокислот всего 20, а триплетов, кодирующих аминокислоты - 61, поэтому каждая аминокислота кодируется несколькими триплетами.


3) Однозначность : каждый триплет (кодон) кодирует только одну аминокислоту.


4) Универсальность : генетический код одинаков для всех живых организмов на Земле.

Задачи

Задачи на количество нуклеотидов/аминокислот
3 нуклеотида = 1 триплет = 1 аминокислота = 1 тРНК


Задачи на АТГЦ
ДНК иРНК тРНК
А У А
Т А У
Г Ц Г
Ц Г Ц

Выберите один, наиболее правильный вариант. иРНК является копией
1) одного гена или группы генов
2) цепи молекулы белка
3) одной молекулы белка
4) части плазматической мембраны

Ответ


Выберите один, наиболее правильный вариант. Первичная структура молекулы белка, заданная последовательностью нуклеотидов иРНК, формируется в процессе
1) трансляции
2) транскрипции
3) редупликации
4) денатурации

Ответ


Выберите один, наиболее правильный вариант. Какая последовательность правильно отражает путь реализации генетической информации
1) ген --> иРНК --> белок --> признак
2) признак --> белок --> иРНК --> ген --> ДНК
3) иРНК --> ген --> белок --> признак
4) ген --> ДНК --> признак --> белок

Ответ


Выберите один, наиболее правильный вариант. Выберите правильную последовательность передачи информации в процессе синтеза белка в клетке
1) ДНК -> информационная РНК -> белок
2) ДНК -> транспортная РНК -> белок
3) рибосомальная РНК -> транспортная РНК -> белок
4) рибосомальная РНК -> ДНК -> транспортная РНК -> белок

Ответ


Выберите один, наиболее правильный вариант. Одной и той же аминокислоте соответствует антикодон ЦАА на транспортной РНК и триплет на ДНК
1) ЦАА
2) ЦУУ
3) ГТТ
4) ГАА

Ответ


Выберите один, наиболее правильный вариант. Антикодону ААУ на транспортной РНК соответствует триплет на ДНК
1) ТТА
2) ААТ
3) ААА
4) ТТТ

Ответ


Выберите один, наиболее правильный вариант. Каждая аминокислота в клетке кодируется
1) одной молекулой ДНК
2) несколькими триплетами
3) несколькими генами
4) одним нуклеотидом

Ответ


Выберите один, наиболее правильный вариант. Функциональная единица генетического кода
1) нуклеотид
2) триплет
3) аминокислота
4) тРНК

Ответ


Выберите три варианта. В результате реакций матричного типа синтезируются молекулы
1) полисахаридов
2) ДНК
3) моносахаридов
4) иРНК
5) липидов
6) белка

Ответ


1. Определите последовательность процессов, обеспечивающих биосинтез белка. Запишите соответствующую последовательность цифр.
1) образование пептидных связей между аминокислотами
2) присоединение антикодона тРНК к комплементарному кодону иРНК
3) синтез молекул иРНК на ДНК
4) перемещение иРНК в цитоплазме и ее расположение на рибосоме
5) доставка с помощью тРНК аминокислот к рибосоме

Ответ


2. Установите последовательность процессов биосинтеза белка в клетке. Запишите соответствующую последовательность цифр.
1) образование пептидной связи между аминокислотами
2) взаимодействие кодона иРНК и антикодона тРНК
3) выход тРНК из рибосомы
4) соединение иРНК с рибосомой
5) выход иРНК из ядра в цитоплазму
6) синтез иРНК

Ответ


3. Установите последовательность процессов в биосинтезе белка. Запишите соответствующую последовательность цифр.
1) синтез иРНК на ДНК
2) доставка аминокислоты к рибосоме
3) образование пептидной связи между аминокислотами
4) присоединение аминокислоты к тРНК
5) соединение иРНК с двумя субъединицами рибосомы

Ответ


4. Установите последовательность этапов биосинтеза белка. Запишите соответствующую последовательность цифр.
1) отделение молекулы белка от рибосомы
2) присоединение тРНК к стартовому кодону
3) транскрипция
4) удлинение полипептидной цепи
5) выход мРНК из ядра в цитоплазму

Ответ


5. Установите правильную последовательность процессов биосинтеза белка. Запишите соответствующую последовательность цифр.
1) присоединение аминокислоты к пептиду
2) синтез иРНК на ДНК
3) узнавание кодоном антикодона
4) объединение иРНК с рибосомой
5) выход иРНК в цитоплазму

Ответ


Выберите один, наиболее правильный вариант. Какой антикодон транспортной РНК соответствует триплету ТГА в молекуле ДНК
1) АЦУ
2) ЦУГ
3) УГА
4) АГА

Ответ


Выберите один, наиболее правильный вариант. Генетический код является универсальным, так как
1) каждая аминокислота кодируется тройкой нуклеотидов
2) место аминокислоты в молекуле белка определяют разные триплеты
3) он един для всех живущих на Земле существ
4) несколько триплетов кодируют одну аминокислоту

Ответ


Выберите один, наиболее правильный вариант. Участок ДНК, содержащий информацию об одной полипептидной цепи, называют
1) хромосомой
2) триплетом
3) геном
4) кодом

Ответ


Выберите один, наиболее правильный вариант. Трансляция - это процесс, при котором
1) удваивается количество нитей ДНК
2) на матрице ДНК синтезируется иРНК
3) на матрице иРНК в рибосоме синтезируются белки
4) разрываются водородные связи между молекулами ДНК

Ответ


Выберите три варианта. Биосинтез белка, в отличие от фотосинтеза, происходит
1) в хлоропластах
2) в митохондриях
3) в реакциях пластического обмена
4) в реакциях матричного типа
5) в лизосомах
6) в лейкопластах

Ответ


Выберите один, наиболее правильный вариант. Матрицей для трансляции служит молекула
1) тРНК
2) ДНК
3) рРНК
4) иРНК

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания функций нуклеиновых кислот в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) осуществляют гомеостаз
2) переносят наследственную информацию от ядра к рибосоме
3) участвуют в биосинтезе белка
4) входят в состав клеточной мембраны
5) транспортируют аминокислоты

Ответ


АМИНОКИСЛОТЫ - КОДОНЫ иРНК
Сколько кодонов иРНК кодируют информацию о 20 аминокислотах? В ответе запишите только соответствующее число.

Ответ


АМИНОКИСЛОТЫ - НУКЛЕОТИДЫ иРНК
1. Участок полипептида состоит из 28 аминокислотных остатков. Определите число нуклеотидов в участке иРНК, содержащего информацию о первичной структуре белка.

Ответ


2. Сколько нуклеотидов содержит м-РНК, если синтезированный по ней белок состоит из 180 аминокислотных остатков? В ответе запишите только соответствующее число.

Ответ


АМИНОКИСЛОТЫ - НУКЛЕОТИДЫ ДНК
1. Белок состоит из 140 аминокислотных остатков. Сколько нуклеотидов в участке гена, в котором закодирована первичная структура этого белка?

Ответ


2. Белок состоит из 180 аминокислотных остатков. Сколько нуклеотидов в гене, в котором закодирована последовательность аминокислот в этом белке. В ответе запишите только соответствующее число.

Ответ


3. Фрагмент молекулы ДНК кодирует 36 аминокислот. Сколько нуклеотидов содержит этот фрагмент молекулы ДНК? В ответе запишите соответствующее число.

Ответ


4. Полипептид состоит из 20 аминокислотных звеньев. Определите количество нуклеотидов на участке гена, кодирующих эти аминокислоты в полипептиде. Ответ запишите в виде числа.

Ответ


5. Сколько нуклеотидов в участке гена кодируют фрагмент белка из 25 аминокислотных остатков? В ответ запишите только соответствующее число.

Ответ


6. Сколько нуклеотидов во фрагменте матричной цепи ДНК кодируют 55 аминокислот во фрагменте полипептида? В ответе запишите только соответствующее число.

Ответ


АМИНОКИСЛОТЫ - тРНК
1. Какое число тРНК приняли участие в синтезе белка, который включает 130 аминокислот? В ответе напишите соответствующее число.

Ответ


2. Фрагмент молекулы белка состоит из 25 аминокислот. Сколько молекул тРНК участвовали в его создании? В ответе запишите только соответствующее число.

Ответ


АМИНОКИСЛОТЫ - ТРИПЛЕТЫ
1. Сколько триплетов содержит фрагмент молекулы ДНК, кодирующий 36 аминокислот? В ответе запишите соответствующее число.

Ответ


2. Сколько триплетов кодирует 32 аминокислоты? В ответ запишите только соответствующее число.

Ответ


НУКЛЕОТИДЫ - АМИНОКИСЛОТЫ
1. Какое число аминокислот зашифровано в участке гена, содержащего 129 нуклеотидных остатков?

Ответ


2. Сколько аминокислот кодирует 900 нуклеотидов? В ответ запишите только соответствующее число.

Ответ


3. Какое число аминокислот в белке, если его кодирующий ген состоит из 600 нуклеотидов? В ответ запишите только соответствующее число.

Ответ


4. Сколько аминокислот кодирует 1203 нуклеотида? В ответ запишите только количество аминокислот.

Ответ


5. Сколько аминокислот необходимо для синтеза полипептида, если кодирующая его часть иРНК содержит 108 нуклеотидов? В ответе запишите только соответствующее число.

Ответ


НУКЛЕОТИДЫ иРНК - НУКЛЕОТИДЫ ДНК
В синтезе белка принимает участие молекула иРНК, фрагмент которой содержит 33 нуклеотидных остатка. Определите число нуклеотидных остатков в участке матричной цепи ДНК.

Ответ


НУКЛЕОТИДЫ - тРНК
Какое число транспортных молекул РНК участвовали в трансляции, если участок гена содержит 930 нуклеотидных остатков?

Ответ


ТРИПЛЕТЫ - НУКЛЕОТИДЫ иРНК
Сколько нуклеотидов во фрагменте молекулы иРНК, если фрагмент кодирующей цепи ДНК содержит 130 триплетов? В ответе запишите только соответствующее число.

Ответ


тРНК - АМИНОКИСЛОТЫ
Определите число аминокислот в белке, если в процессе трансляции участвовало 150 молекул т-РНК. В ответе запишите только соответствующее число.

Ответ


ПРОСТО
Сколько нуклеотидов составляют один кодон иРНК?

Ответ


Сколько нуклеотидов составляют один стоп-кодон иРНК?

Ответ


Сколько нуклеотидов составляют антикодон тРНК?

Ответ


СЛОЖНО
Белок имеет относительную молекулярную массу 6000. Определите количество аминокислот в молекуле белка, если относительная молекулярная масса одного аминокислотного остатка 120. В ответе запишите только соответствующее число.

Ответ


В двух цепях молекулы ДНК насчитывается 3000 нуклеотидов. Информация о структуре белка кодируется на одной из цепей. Подсчитайте сколько закодировано аминокислот на одной цепи ДНК. В ответ запишите только соответствующее количеству аминокислот число.

Ответ


Выберите один, наиболее правильный вариант. Одной и той же аминокислоте соответствует антикодон УЦА на транспортной РНК и триплет в гене на ДНК
1) ГТА
2) АЦА
3) ТГТ
4) ТЦА

Ответ


Выберите один, наиболее правильный вариант. Синтез гемоглобина в клетке контролирует определенный отрезок молекулы ДНК, который называют
1) кодоном
2) триплетом
3) генетическим кодом
4) геном

Ответ


В каких из перечисленных органоидов клетки происходят реакции матричного синтеза? Определите три верных утверждения из общего списка, и запишите цифры, под которыми они указаны.
1) центриоли
2) лизосомы
3) аппарат Гольджи
4) рибосомы
5) митохондрии
6) хлоропласты

Ответ


Рассмотрите рисунок с изображением процессов, протекающих в клетке, и укажите А) название процесса, обозначенного буквой А, Б) название процесса, обозначенного буквой Б, В) название типа химических реакций. Для каждой буквы выберите соответствующий термин из предложенного списка.
1) репликация
2) транскрипция
3) трансляция
4) денатурация
5) реакции экзотермические
6) реакции замещения
7) реакции матричного синтеза
8) реакции расщепления

Ответ



Рассмотрите рисунок и укажите (А) название процесса 1, (Б) название процесса 2, (в) конечный продукт процесса 2. Для каждой буквы выберите соответствующий термин или соответствующее понятие из предложенного списка.
1) тРНК
2) полипептид
3) рибосома
4) репликация
5) трансляция
6) конъюгация
7) АТФ
8) транскрипция

Ответ


Установите соответствие между процессами и этапами синтеза белка: 1) транскрипция, 2) трансляция. Запишите цифры 1 и 2 в правильном порядке.
А) перенос аминокислот т-РНК
Б) принимает участие ДНК
В) синтез и-РНК
Г) формирование полипептидной цепи
Д) происходит на рибосоме

Ответ



Все перечисленные ниже признаки, кроме двух, используются для описания изображенного на рисунке процесса. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) по принципу комплементарности последовательность нуклеотидов молекулы ДНК переводится в последовательность нуклеотидов молекул различных видов РНК
2) процесс перевода последовательности нуклеотидов в последовательность аминокислот
3) процесс переноса генетической информации из ядра к месту синтеза белка
4) процесс происходит в рибосомах
5) результат процесса – синтез РНК

Ответ


Молекулярная масса полипептида составляет 30000 у.е. Определите длину кодирующего его гена, если молекулярная масса одной аминокислоты в среднем равна 100, а расстояние между нуклеотидами в ДНК составляет 0,34 нм. В ответе запишите только соответствующее число.

Ответ


Выберите из перечисленных ниже реакций две, относящихся к реакциям матричного синтеза. Запишите цифры, под которыми они указаны.
1) синтез целлюлозы
2) синтез АТФ
3) биосинтез белка
4) окисление глюкозы
5) репликация ДНК

Ответ


Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны. К матричным реакциям в клетке относят
1) репликацию ДНК
2) фотолиз воды
3) синтез РНК
4) хемосинтез
5) биосинтез белка
6) синтез АТФ

Ответ


Все приведённые ниже признаки, кроме двух, можно использовать для описания процесса биосинтеза белка в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) Процесс происходит при наличии ферментов.
2) Центральная роль в процессе принадлежит молекулам РНК.
3) Процесс сопровождается синтезом АТФ.
4) Мономерами для образования молекул служат аминокислоты.
5) Сборка молекул белков осуществляется в лизосомах.

Ответ


Найдите три ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны. (1) При биосинтезе белка протекают реакции матричного синтеза. (2) К реакциям матричного синтеза относят только реакции репликации и транскрипции. (3) В результате транскрипции синтезируется иРНК, матрицей для которой служит вся молекула ДНК. (4) Пройдя через поры ядра, иРНК поступает в цитоплазму. (5) Информационная РНК участвует в синтезе тРНК. (6) Транспортная РНК обеспечивает доставку аминокислот для сборки белка. (7) На соединение каждой из аминокислот с тРНК расходуется энергия молекул АТФ.

Ответ


Все перечисленные ниже понятия, кроме двух, используются для описания трансляции. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) матричный синтез
2) митотическое веретено
3) полисома
4) пептидная связь
5) высшие жирные кислоты

Ответ

© Д.В.Поздняков, 2009-2019

Понравилась статья? Поделитесь ей