Контакты

Разряд статического электричества возникает при условии. Статическое напряжение

Статическое напряжение появляется в случае нарушения внутриатомного либо внутримолекулярного равновесия вследствие приобретения либо утраты электрона. Обычно атом находится в сбалансированном состоянии благодаря схожему числу положительных и отрицательных частиц — протонов и электронов. Электроны могут просто передвигаются от 1-го атома к другому. При всем этом они сформировывают положительные (где отсутствует электрон) либо отрицательные (одиночный электрон либо атом с дополнительным электроном) ионы. Когда происходит таковой дисбаланс, появляется статическое напряжение.

Электронный заряд электрона — (-) 1,6 х 10-19 кулон. Протон с таким же по величине зарядом имеет положительную полярность. Статический заряд в кулонах прямо пропорционален излишку либо недостатку электронов, т.е. числу неуравновешенных ионов. Кулон – это основная единица статического заряда, определяющая количество электричества, проходящее через поперечное сечение проводника за 1 секунду при силе тока в 1 ампер.

У положительного иона отсутствует один электрон, как следует, он может просто принимать электрон от негативно заряженной частички. Отрицательный ион в свою очередь может быть или одиночным электроном, или атомом/молекулой с огромным числом электронов. В обоих случаях существует электрон, способный нейтрализовать положительный заряд.

Как генерируется статическое напряжение

Главные предпосылки возникновения статического напряжения:

1. Контакт меж 2-мя материалами и их отделение друг от друга (включая трение, намотку/размотку и пр.).

2. Резвый температурный перепад (к примеру, в момент помещения материала в духовой шкаф).

3. Радиация с высочайшими значениями энергии, уф-излучение, рентгеновские X-лучи, сильные электронные поля (нерядовые для промышленных производств).

4. Резательные операции (к примеру, на раскроечных станках либо бумагорезальных машинах).

5. Наведение (вызванное статическим зарядом появление электронного поля).

Поверхностный контакт и разделение материалов, может быть, являются более всераспространенными причинами появления статического напряжения на производствах, связанных с обработкой рулонных пленок и листовых пластиков. Статический заряд генерируется в процессе разматывания/наматывания материалов либо перемещения друг относительно друга разных слоев материалов. Этот процесс не полностью понятен, но более правдивое разъяснение возникновения статического напряжения в этом случае может быть получено проведением аналогии с плоским конденсатором, в каком механическая энергия при разделении пластинок преобразуется в электронную:

Результирующее напряжение = изначальное напряжение х (конечное расстояние меж пластинами/изначальное расстояние меж пластинами).

Когда синтетическая пленка касается подающего/приемного вала, низкий заряд, перетекающий от материала к валу, провоцирует дисбаланс. По мере того, как материал преодолевает зону контакта с валом, напряжение растет точно также как в случае с конденсаторными пластинами в момент их разделения.

Практика указывает, что амплитуда результирующего напряжения ограничена вследствие электронного пробоя, возникающего в промежутке меж примыкающими материалами, поверхностной проводимости и других причин. На выходе пленки из контактной зоны нередко можно слышать слабенькое потрескивание либо следить искрение. Это происходит в момент, когда статический заряд добивается величины, достаточной для пробоя окружающего воздуха. До контакта с валом синтетическая пленка исходя из убеждений электричества нейтральна, но в процессе перемещения и контакта с подающими поверхностями поток электронов направляется на пленку и заряжает ее отрицательным зарядом. Если вал железный и заземленный его положительный заряд стремительно стекает.

Большая часть оборудования имеет много валов, потому величина заряда и его полярность могут нередко изменяться. Лучший метод контроля статического заряда – это его четкое определение на участке конкретно перед проблемной зоной. Если заряд нейтрализован очень рано, он может восстановиться до того, как пленка достигнет этой проблемной зоны.

В теории появление статического заряда может быть проиллюстрировано обычный электронной схемой: C – делает функцию конденсатора, который копит заряд, как батарея. Это обычно поверхность материала либо изделия.

R – сопротивление, способное ослабить заряд материала/механизма (обычно при слабенькой циркуляции тока). Если материал является проводником, заряд стекает на землю и не делает заморочек. Если же материал является изолятором, заряд не сумеет стекать, и появляются трудности. Искровой разряд появляется в этом случае, когда напряжение скопленного заряда добивается предельного порога.

Токовая нагрузка — заряд, сгенерированный, к примеру, в процессе перемещения пленки по валу. Ток заряда заряжает конденсатор (объект) и увеличивает его напряжение U. В то время как напряжение увеличивается, ток течет через сопротивление R. Баланс будет достигнут в момент, когда ток заряда станет равен току, циркулирующему по замкнутому контуру сопротивления. (Закон Ома: U = I х R).

Если объект имеет способность копить значимый заряд, и если имеет место высочайшее напряжение, статическое напряжение приводит к появлению таких суровых заморочек, как искрение, электростатическое отталкивание/притягивание либо электропоражение персонала.

Полярность заряда

Статический заряд может быть или положительным, или отрицательным. Для разрядников неизменного тока (AC) и пассивных разрядников (щеток) полярность заряда обычно не принципиальна.

Трудности, связанные со статическим напряжением

Существует 4 главные области:

Статический разряд в электронике

На эту делему нужно направить внимание, т.к. она нередко появляется в процессе воззвания с электрическими блоками и компонентами, использующимися в современных контрольно-измерительных устройствах.

В электронике основная опасность, связанная со статическим зарядом, исходит от человека, несущего заряд, и третировать этим нельзя. Ток разряда порождает тепло, которое приводит к разрушению соединений, прерыванию контактов и разрыву дорожек микросхем. Высочайшее напряжение уничтожает также узкую оксидную пленку на полевых транзисторах и других элементах, имеющих покрытие.

Нередко составляющие не стопроцентно выходят из строя, что можно считать еще больше небезопасным, т.к. неисправность проявляется не сходу, а в непредсказуемый момент в процессе использования устройства.

Общепринятое правило: при работе с чувствительными к статическому электричеству деталями и устройствами нужно всегда принимать конструктивные меры для нейтрализации заряда, скопленного на человеческом теле. Подробная информация по этому вопросу содержится в документах евро эталона CECC 00015.

Электростатическое притяжение/отталкивание

Это, может быть, более обширно всераспространенная неувязка, возникающая на предприятиях, связанных с созданием и обработкой пластмасс, бумаги, текстиля и в смежных отраслях. Она проявляется в том, что материалы без помощи других меняют свое поведение — склеиваются меж собой либо, напротив, отталкиваются, прилипают к оборудованию, притягивают пыль, некорректно наматываются на приемное устройство и пр.

Притягивание/отталкивание происходит в согласовании с законом Кулона, в базе которого лежит принцип противоположности квадрата. В обычный форме он выражается последующим образом:

Сила притяжения либо отталкивания (в Ньютонах) = Заряд (А) х Заряд (В) / (Расстояние меж объектами 2 (в метрах)).

Как следует, интенсивность проявления этого эффекта впрямую связана с амплитудой статического заряда и расстоянием меж притягивающимися либо отталкивающимися объектами. Притягивание и отталкивание происходят в направлении силовых линий электронного поля.

Если два заряда имеют схожую полярность – они отталкиваются, если обратную – притягиваются. Если один из объектов заряжен, он будет стимулировать притягивание, создавая зеркальную копию заряда на нейтральных объектах.

Риск появления пожара

Риск появления пожара не является общей для всех производств неувязкой. Но возможность возгорания очень велика на полиграфических и других предприятиях, где употребляются легковоспламеняющиеся растворители.

В небезопасных зонах более всераспространенными источниками возгорания являются незаземленное оборудование и подвижные проводники. Если на операторе, находящемся в небезопасной зоне, насажена спортивная обувь либо туфли на токонепроводящей подошве, существует риск, что его тело будет генерировать заряд, способный спровоцировать возгорание растворителей. Незаземленные проводящие детали машин также представляют опасность. Все, что находится в небезопасной зоне должно быть отлично заземлено.

Нижеследующая информация дает короткое пояснение возможности статического разряда стимулировать возгорание в легковоспламеняющихся средах. Принципиально, чтоб неопытные торговцы были заблаговременно ознакомлены о видах оборудования, чтоб не допустить ошибки в подборе устройств для внедрения в таких критериях.

Способность разряда стимулировать возгорание находится в зависимости от многих переменных причин:
— типа разряда;
— мощности разряда;
— источника разряда;
— энергии разряда;
— наличия легковоспламеняющейся среды (растворителей в газовой фазе, пыли либо горючих жидкостей);
— малой энергии воспламенения (МЭВ) легковоспламеняющейся среды.

Типы разряда

Существует три главных типа – искровой, кистевой и скользящий кистевой разряды. Коронный разряд в этом случае во внимание не принимается, т.к. он отличается низкой энергией и происходит довольно медлительно. Коронный разряд в большинстве случаев безопасен, его следует учесть исключительно в зонах очень высочайшей пожаро- и взрывоопасности.

Искровой разряд

В главном он исходит от равномерно проводящего, электрически изолированного объекта. Это может быть человеческое тело, деталь машины либо инструмент. Подразумевается, что вся энергия заряда рассеивается в момент искрения. Если энергия выше МЭВ паров растворителя, может произойти воспламенение.

Энергия искры рассчитывается последующим образом: Е (в Джоулях) = ½ С U2.

Кистевой разряд

Кистевой разряд появляется, когда заостренные части деталей оборудования концентрируют заряд на поверхностях диэлектрических материалов, изоляционные характеристики которых приводят к его скоплению. Кистевой разряд отличается более низкой энергией по сопоставлению с искровым и, соответственно, представляет наименьшую опасность в отношении воспламенения.

Скользящий кистевой разряд

Скользящий кистевой разряд происходит на листовых либо рулонных синтетических материалах с высочайшим удельным сопротивлением, имеющих завышенную плотность заряда и разную полярность зарядов с каждой стороны полотна. Такое явление может быть спровоцировано трением либо распылением порошкового покрытия. Эффект сравним с разрядкой плоского конденсатора и может представлять такую же опасность, как искровой разряд.

Источник и энергия разряда

Величина и геометрия рассредотачивания заряда являются необходимыми факторами. Чем больше объем тела, тем больше энергии оно содержит. Острые углы увеличивают мощность поля и поддерживают разряды.

Мощность разряда

Если объект, имеющий энергию, не прекрасно проводит электронный ток, к примеру, тело человека, сопротивление объекта будет ослаблять разряд и понижать опасность. Для тела человека существует эмпирическое правило: считать, что любые растворители с внутренней малой энергией воспламенения наименее 100 мДж могут возгореться невзирая на то, что энергия, содержащаяся в теле, может быть выше в 2 – 3 раза.

Малая энергия воспламенения МЭВ

Малая энергия воспламенения растворителей и их концентрация в небезопасной зоне являются очень необходимыми факторами. Если малая энергия воспламенения ниже энергии разряда, появляется риск возгорания. Электропоражение

Вопросу риска статического удара в критериях промышленного предприятия уделяется больше внимания. Это связано с значимым увеличением требований к гигиене и безопасности труда.

Электропоражение, спровоцированное статическим напряжением, в принципе не представляет особенной угрозы. Оно просто неприятно и нередко вызывает резкую реакцию.

Есть две общие предпосылки статического удара:

Наведенный заряд

Если человек находится в электронном поле и держится за заряженный объект, к примеру, за намоточную бобину для пленки, может быть, что его тело зарядится.

Заряд остается в теле оператора, если он находится в обуви на изолирующей подошве, до того момента, пока он не дотронется до заземленного оборудования. Заряд стекает на землю и поражает человека. Такое происходит и в случае, когда оператор дотрагивается до заряженных объектов либо материалов – из-за изолирующей обуви заряд скапливается в теле. Когда оператор трогает железные детали оборудования, заряд может стечь и спровоцировать электроудар.

При перемещении людей по синтетическим ковровым покрытиям порождается статический заряд при контакте меж ковром и обувью. Электроудары, которые получают водители, покидая свою машину, провоцируются зарядом, появившимся меж сидением и их одежкой в момент подъема. Решение этой трудности – дотронуться до железной детали автомобиля, к примеру, до рамы дверного проема, до момента подъема с сидения. Это позволяет заряду неопасно стекать на землю через кузов автомобиля и его шины.

Электропоражение, спровоцированное оборудованием

Таковой электроудар вероятен, хотя происходит существенно пореже, чем поражение, спровоцированное материалом.

Если намоточная бобина имеет значимый заряд, случается, что пальцы оператора концентрируют заряд до таковой степени, что он добивается точки пробоя и происходит разряд. Кроме этого, если железный незаземленный объект находится в электронном поле, он может зарядиться наведенным зарядом. Из-за того, что железный объект является токопроводящим, подвижный заряд разрядится в человека, который дотрагивается до объекта.

Повседневная деятельность любого человека связана с его перемещением в пространстве. При этом он не только ходит пешком, но и ездит на транспорте.

Во время любого движения происходит перераспределение статических зарядов, изменяющих баланс внутреннего равновесия между атомами и электронами каждого вещества. Он связан с процессом электризации, образованием статического электричества.

У твердых тел распределение зарядов происходит за счет перемещения электронов, а у жидких и газообразных - как электронов, так и заряженных ионов. Все они в комплексе создают разность потенциалов.

Причины образования статического электричества

Наиболее распространенные примеры проявления сил статики объясняют в школе на первых уроках физики, когда натирают стеклянные и эбонитовые палочки о шерстяную ткань и демонстрируют притяжение к ним мелких кусочков бумаги.

Также известен опыт по отклонению тонкой струи воды под действием статических зарядов, сконцентрированных на эбонитовом стержне.

В быту статическое электричество проявляется чаще всего:

    при ношении шерстяной или синтетической одежды;

    хождении в обуви с резиновой подошвой или в шерстяных носках по коврам и линолеуму;

    пользовании пластиковыми предметами.


Ситуацию усугубляют:

    сухой воздух внутри помещений;

    железобетонные стены, из которых выполнены многоэтажные здания.

Как создается статический заряд

Обычно физическое тело содержит в себе равное количество положительных и отрицательных частиц, за счет чего в нем создан баланс, обеспечивающий его нейтральное состояние. Когда оно нарушается, то тело приобретает электрический заряд определённого знака.

Под статикой подразумевают состояние покоя, когда тело не движется. Внутри его вещества может происходить поляризация - перемещение зарядов с одной части на другую или перенос их с рядом расположенного предмета.

Электризация веществ происходит за счет приобретения, удаления или разделения зарядов при:

    взаимодействии материалов за счет сил трения или вращения;

    резком температурном перепаде;

    облучении различными способами;

    разделении или разрезании физических тел.

Распределяются по поверхности предмета или на удалении от нее в несколько междуатомных расстояний. У незаземленных тел они распространяются по площади контактного слоя, а у подключенных к контуру земли стекают на него.

Приобретение статических зарядов телом и их стекание происходит одновременно. Электризация обеспечивается тогда, когда тело получает бо́льший потенциал энергии, чем расходует во внешнюю среду.

Из этого положения вытекает практический вывод: для защиты тела от статического электричества необходимо с него отводить приобретаемые заряды на контур земли.

Способы оценки статического электричества

Физические вещества по способности образовывать электрические заряды разных знаков при взаимодействии трением с другими телами, характеризуют по шкале трибоэлектрического эффекта. Часть их показана на картинке.


В качестве примера их взаимодействия можно привести следующие факты:

    хождение в шерстяных носках или обуви с резиновой подошвой по сухому ковру может зарядить человеческое тело до 5÷-6 кВ;

    корпус автомобиля, едущего по сухой дороге, приобретает потенциал до 10 кВ;

    ремень привода, вращающий шкив, заряжается до 25 кВ.

Как видим, потенциал статического электричества достигает очень больших величин даже в бытовых условиях. Но он не причиняет нам большого вреда потому, что не обладает высокой мощностью, а его разряд проходит через высокое сопротивление контактных площадок и измеряется в долях миллиампера или чуть больше.

К тому же его значительно уменьшает влажность воздуха. Ее влияние на величину напряжения тела при контакте с различными материалами показано на графике.


Из его анализа следует вывод: во влажной среде статическое электричество проявляется меньше. Поэтому для борьбы с ним используют различные увлажнители воздуха.

В природе статическое электричество может достигать огромных величин. При перемещении облаков на дальние расстояния между ними скапливаются значительные потенциалы, которые проявляются молниями, энергии которых бывает достаточно для того, чтобы расколоть вдоль ствола вековое дерево или сжечь жилое здание.

При разряде статического электричества в быту мы чувствуем «пощипывания» пальцев, видим искры, исходящие от шерстяных вещей, ощущаем снижение бодрости, работоспособности. Ток, действию которого подвергается наш организм в быту, отрицательно сказывается на самочувствии, состоянии нервной системы, но он не приносит явных, видимых повреждений.

Производители измерительного промышленного оборудования выпускают приборы, позволяющие точно определить величину напряжения накопленных статических зарядов как на корпусах оборудования, так и на теле человека.


Как защититься от действия статического электричества в быту

Каждый из нас должен понимать процессы, которые образуют статические разряды, представляющие угрозу для нашего организма. Их следует знать и ограничивать. С этой целью проводятся различные обучающие мероприятия, включая популярные телепередачи для населения.


На них доступными средствами показываются способы создания статического напряжения, принципы его замера и методы выполнения профилактических мероприятий.

Например, учитывая трибоэлектрический эффект, лучше всего для расчесывания волос использовать расчески из натурального дерева, а не металла или пластика, как делает большинство людей. Древесина обладает нейтральными свойствами и при трении по волосам не образует заряды.


Для снятия статического потенциала с корпуса автомобиля при его движении по сухой дороге служат специальные ленты с антистатиком, крепящиеся к днищу. Различные их виды широко представлены в продаже.


Если такой защиты на автомобиле нет, то потенциал напряжения можно снимать кратковременным заземлением корпуса через металлический предмет, например, ключ зажигания автомобиля. Особенно важно выполнять эту процедуру перед заправкой топливом.

Когда на одежде из синтетических материлов накапливается статический заряд, то снять его можно обработкой паров из специального баллончика с составом «Антистатика». А вообще лучше меньше пользоваться подобными тканями и носить натуральные материалы из льна или хлопка.

Обувь с прорезиненной подошвой тоже споосбствует накапливанию зарядов. Достаточно положить в нее антистатические стельки из натуральных материалов, как вредное воздействие на организм будет снижено.

Влияние сухого воздуха, характерного для городских квартир в зимнее время, уже обговорено. Специальные увлажнители или даже небольшие куски смоченной материи, положенные на бытарею, улучшают обстановку, снижают процесс образования статического электричества. А вот регулярное выполнение влажной уборки в помещениях позволяет своевременно удалять наэлектризованные частички и пыль. Это один из лучших способов защиты.

Бытовые электрические приборы при работе тоже накапливают на корпусе статические заряды. Снижать их воздействие призвана система уравнивания потенциалов, подключаемая к общему контуру заземления здания. Даже простая акрилловая ванна или старая чугунная конструкция с такой же вставкой подвержена статике и требует защиты подобным способом.

Как выполняется защита от действия статического электричества на производстве

Факторы, снижающие работоспособность электронного оборудования

Разряды, возникающе при изготовлении полупроводниковых материалов, способны причинить большой вред, нарущить электрические характеристики приборов или вообще вывести их из строя.

В условиях производства разряд может носить случайный характер и зависеть от ряда различных факторов:

    величин образовавшейся емкости;

    энергии потенциала;

    электрического сопротивления контактов;

    вида переходных процессов;

    других случайностей.

При этом в начальный момент порядка десяти наносекунд происходит возрастание тока разряда до максимума, а затем он снижается в течение 100÷300 нс.

Характер возникновения статического разряда на полупроводниковый прибор через тело оператора показан на картинке.

На величину тока оказывают влияние: емкость заряда, накопленного человеком, сопротивление его тела и контактных площадок.

При производстве электротехнического оборудования статический разряд может создаться и без участия оператора за счет образования контактов через заземленные поверхности.

В этом случае на ток разряда влияет емкость заряда, накопленная корпусом прибора и сопротивление образовавшихся контактных площадок. При этом на полупроводник в первоначальный момент одновременно влияют наведенный потенциал высокого напряжения и разрядный ток.

За счет такого комплексного воздействия повреждения могут быть:

1. явными, когда работоспособность элементов уменьшена до такой степени, что они становятся непригодными к эксплуатации;

2. скрытыми - за счет снижения выходных параметров, иногда даже укладывающихся в рамки установленных заводских характеристик.

Второй вид неисправностей обнаружить сложно: они сказываются чаще всего потерей работоспособности во время эксплуатации.

Пример подобного повреждения от действия высокого напряжения статики демонстрируют графики отклонения вольт амперных характеристик применительно к диоду КД522Д и интегральной микросхеме БИС КР1005ВИ1.


Коричневая линия под цифрой 1 показывает параметры полупроводниковых приборов до испытаний повышенным напряжением, а кривые с номером 2 и 3 - их снижение под действием увеличенного наведенного потенциала. В случае №3 оно имеет большее воздействие.

Причинами повреждений могут быть действия от:

    завышенного наведенного напряжения, которое пробивает слой диэлектрика полупроводниковых приборов или нарушает структуру кристалла;

    высокой плотности протекающего тока, вызывающей большую температуру, приводящую к расплавлению материалов и прожигу оксидного слоя;

    испытания, электротермотренировки.

Скрытые повреждения могут сказаться на работоспособности не сразу, а через несколько месяцев или даже лет эксплуатации.

Способы выполнения защит от статического электричества на производстве

В зависимости от типа промышленного оборудования используют один из следующих методов сохранения работоспособности или их сочетания:

1. исключение образования электростатических зарядов;

2. блокирование их попадания на рабочее место;

3. повышение стойкости приборов и комплектующих приспособлений к действию разрядов.

Способы №1 и №2 позволяют выполнять защиту большой группы различных приборов в комплексе, а №3 - используется для отдельных устройств.

Высокая эффективность сохранения работоспособности оборудования достигается помещением его внутрь клетки Фарадея - огражденного со всех сторон пространства мелкоячеистой металлической сеткой, подключенной к контуру заземления. Внутри нее не проникают внешние электрические поля, а статическое магнитное - присутствует.

По этому принципу работают кабели с экранированной оболочкой.

Защиты от статики классифицируют по принципам исполнения на:

    физико-механические;

    химические;

    конструкционно-технологические.

Первые два способа позволяют предотвратить или уменьшить процесс образования статических зарядов и увеличить скорость их стекания. Третий прием защищает приборы от воздействия зарядов, но он не влияет на их сток.

Улучшить стекание разрядов можно за счет:

    создания коронирования;

    повышения проводимости материалов, на которых накапливаются заряды.

Решают эти вопросы:

    ионизацией воздуха;

    повышением рабочих поверхностей;

    подбором материалов с лучшей объемной проводимостью.

За счет их реализации создают подготовленные заранее магистрали для стекания статических зарядов на контур заземления, исключения их попадания на рабочие элементы приборов. При этом учитывают, что общее электрическое сопротивление созданного пути не должно превышать 10 Ом.

Если материалы обладают большим сопротивлением, то защиту выполняют другими способами. Иначе на поверхности начинают скапливаться заряды, которые могут разрядиться при контакте с землей.

Пример выполнения комплексной электростатической защиты рабочего места для оператора, занимающегося обслуживанием и наладкой электронных приборов, показан на картинке.


Поверхность стола через соединительный проводник и токопроводящий коврик подключена к контуру заземления с помощью специальных клемм. Оператор работает в специальной одежде, носит обувь с токопроводящей подошвой и сидит на стуле со специальным сидением. Все эти мероприятия позволяют качественно отводить скапливающиеся заряды на землю.

Работающие ионизаторы воздуха регулируют влажность, снижают потенциал статического электричества. При их использовании учитывают, что повышенное содержание паров воды в воздухе отрицательно влияет на здоровье людей. Поэтому ее стараются поддерживать на уровне порядка 40%.

Также эффективным способом может быть регулярное проветривание помещения или использование в нем системы вентиляции, когда воздух проходит через фильтры, ионизируется и смешивается, обеспечивая таким образом нейтрализацию возникающих зарядов.

Для снижения потенциала, накапливаемого телом человеком, могут применяться браслеты, дополняющие комплект антистатической одежды и обуви. Они состоят из токопроводящей полосы, которая крепится на руке с помощью пряжки. Последняя подключена к проводу заземления.

При этом способе ограничивают ток, протекающий через человеческий организм. Его величина не должна превышать один миллиампер. Бо́льшие значения могут причинять боль и создавать электротравмы.

Во время стекания заряда на землю важно обеспечить скорость его ухода за одну секунду. С этой целью применяют покрытия пола с малым электрическим сопротивлением.

При работе с полупроводниковыми платами и электронными блоками защита от повреждения статическим электричеством обеспечивается также:

    принудительным шунтированием выводов электронных плат и блоков во время проверок;

    использованием инструмента и паяльников с заземлёнными рабочими головками.

Емкости с легковоспламеняющимися жидкостями, расположенные на транспорте, заземляются с помощью металлической цепи. Даже фюзеляж самолета снабжается металлическими тросиками, которые при посадке работают защитой от статического электричества.

В этой статье я постараюсь максимально доступно и наглядно, простым языком, без лишних сложных физических терминов, объяснить, что такое статическое электричество, как оно образуется и что является лучшей защитой от него.

Что такое статическое электричество, как оно образуется

Как я уже сказал, статическое электричество может воздействовать на нас в различных местах, в любой момент, даже тогда, когда вы просто пытаетесь открыть дверь, касаясь дверной ручки.

Чтобы понять причину появления статического электричества для начала нужно вспомнить о природе материи.

Как вы знаете вся материя состоит из атомов, которые, в свою очередь, состоят из трех разных видов более мелких частиц:

- отрицательно заряженных электронов

- положительно заряженных протонов

- не имеющих зарядов нейтронов

В большинстве тел, чаще всего, электроны и протоны полностью компенсируют друг друга, их количество в атомах равное, соответственно, эти предметы электронейтральны.

Но так как электроны очень маленькие частицы и их масса незначительна, то даже обычное трение даёт слабо связанным электронам достаточно энергии, чтобы они покинули свои атомы и перешли в атомы на другой поверхности.

Когда это происходит у одного объекта протонов остаётся больше, чем электронов, и он становится положительно заряженным, а объект у которого больше электронов, наоборот, накапливает отрицательный заряд. Такая ситуация называется дисбалансом зарядов или еще разделением зарядов.

Но как вы знаете, природа постоянно стремится к восстановлению равновесия поэтому, когда одно из заряженных тел вступает в контакт с другим, свободные электроны немедленно используют эту возможность попасть туда где они нужнее, где их не хватает - покинув отрицательно заряженный объект, чтобы восстановить баланс.

Вот это перескакивание электронов от отрицательно заряженного тела и есть знакомое всем явление - статическое электричество, называемое еще статическим разрядом .

К счастью это происходит далеко не с каждым объектом, иначе нас бы било током постоянно.

Чаще всего слабо связанными электронами обладают материалы - электрические проводники, самым ярким представителем которых являются металлы. А вот у диэлектриков, изоляторов, материалов, плохо проводящих электрический ток, электроны прочносвязанные, они свободно не переходят к атомам других материалов.

С большей вероятностью накапливание электрического разряда происходит именно при взаимодействии проводника с диэлектриком, при трении одного материала о другой.

Так, например, когда вы просто идёте по ковру, электроны вашего тела, из-за трения ног об ковер, перемещаются на него, так как человеческое тело проводник электрического тока. В то же время материал ковра - шерсть, сопротивляется отделению своих прочносвязанных электронов, являясь диэлектриком.

И хотя в момент, когда вы находитесь на ковре, ваше тело и ковер вместе остаются электрически нейтральными у них уже есть разделение разрядов.

И теперь, когда вы просто дотрагиваетесь до металлической дверной ручки - немедленно ощущаете статический разряд. Всё дело в том, что свободные электроны с металлической ручки перескакивают на вашу руку замещая потерянные вашим телом электроны, которые перескочили на ковер.

Теперь, я думаю, вам понятно, что такое статическое электричество и почему оно образуется. Кстати, его самым ярким проявлением в природе являются молнии.

При определенных условиях в облаках происходит разделение зарядов, после чего этот дисбаланс нейтрализуется, электроны высвобождаются и поглощаются другими телами - домами, землей или даже другим облаком, с образованием гигантской вспышки - молнии.

Защита от статического электричества

И так, зная природу статического электричества, вы сможете эффективно применять и защиту от него, не только дома в быту, но и на производстве.

Есть несколько основных видов мер защиты от статического электричества:

Создание условий для рассеивания свободных электронов

Предупреждение возникновения и накапливания статического электричества

ЗАЗЕМЛЕНИЕ

Основным и самым главным средств защиты от статического электричества является организация заземления токопроводящих, не находящихся под напряжением элементов, будь то корпус стиральной машины, автомобиля или токарного станка. Делается это, чтобы образующиеся свободные электроны, идя по пути наименьшего сопротивления, отводились в землю.

У большей части домашней бытовой техники - холодильников, стиральных машин и т.д. для этого используется третий желто-зеленый заземляющий проводник питающего кабеля, которым он подключается к сети. В остальных же случаях на корпус подводится отдельный провод, также подключаемый к системе заземления.

В случае же с автомобилем, используется токопроводящая полоса или цепь, которая крепиться одним концом к кузову машины, а второй касается земли.

Еще одним из распространенных способов защиты от статического электричества является увеличение электропроводимости диэлектрических материалов , за счет чего они получают возможность отводить свободные электроны.

Достигается это путем нанесения на диэлектрические предметы токопроводящих покрытий или материалов, например, поверхностной плёнки из токопроводящего материала, тонкой фольги и т.д.

В частности, в быту, можно пользоваться специальными средствами, так называемыми, антистатиками, думаю многие женщины понимают, о чем идёт речь.

Такой спрей-антистатик обычно состоит из токопроводящего полимера, растворённого в смеси деионизированной воды и спирта. После обработки поверхности раствор испаряется, а полимер остается в виде тончайшей токопроводящей плёнки, которая не даёт заряду накапливаться на поверхности предмета.

Подобный эффект также достигается увеличения влажности воздуха до 60-70%, при котором на поверхности диэлектриков появляется тонкая пленка влаги, за счет которой, обеспечивается достаточная поверхностная электропроводность материалов.

ИОНИЗАЦИЯ ВОЗДУХА

Эффективным и доступным средством защиты от статического электричества также является ионизация воздуха.

Для этого используется специальный прибор - ионизатор, который генерирует поток положительно и отрицательно заряженных ионов, распространяемых вентилятором. Они, притягиваются к молекулам противоположной полярности окружающих предметов и нейтрализуют статический заряд на них.

Если же не получается бороться со статическим электричеством вышеперечисленными способами, можно действовать более кардинально. Например, начать пользоваться повседневными предметами их других материалов слабоэлектризующимися или неэлектризующимися вовсе. Заменить чехлы в автомобиле, купить другие тапочки для дома и т.д.

Если же вы знаете другие действенные способы защиты от статического электричества - обязательно пишите о них в комментариях к статье, это будет полезно и интересно многим. Кроме того, как всегда приветствуется здоровая критика, вопросы, предложения, буду рад общению.

Валуев Н.С. 1

Биндич Т.Н. 1

1 Муниципальное бюджетное образовательное учреждение «Средняя общеобразовательная школа № 50» г. Калуги

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Все мы знакомы с явлением под названием электрический ток. Когда электроны по проводнику двигаются из пункта А в пункт Б, по пути делая еще кое-какую работу, которую задает им человек. Накалить утюг, остудить холодильник, показать нам интересный фильм. Они - электроны - как стая маленьких муравьишек, вместе способные горы свернуть. А провода для них - единственно возможный путь, с различными заданиями и препятствиями на нем. Электроны свободно бегут по проводам, потому что провода сделаны из специальных материалов - проводников. И тут, вроде бы, все понятно. Но есть материалы не проводящие электричество - диэлектрики. Они не дают электронам двигаться. И тут все, вроде бы, тоже понятно: нет электрического тока.

Однако вы удивитесь, что на поверхности диэлектрика может образоваться такое напряжение, какое не сыщешь ни в одной розетке. В сотни тысяч и даже в миллионы Вольт! И это тоже электричество. Люди зовут его “Статическое электричество”. Потому, что наши “муравьишки” никуда не бегут - они стоят на месте. Однако, желание их бежать так велико, что некоторое расстояние они могут “перепрыгнуть”, создавя тем самым завораживающее зрелище - электрический разряд или молнию.

Повзольте вам представить наше исследование статического электричества (далее - СЭ), цели которого: понять, что такое СЭ; увидеть СЭ, а для этого построить соответствующий прибор; получить СЭ при помощи янтаря и шерсти; увидеть молнию без тучи, а, возможно, даже научиться левитировать; и, наконец, сделать выводы из полученных результатов и предложить собственный вариант использования СЭ.

Задачи в рамках исследования:

Изучить проявления СЭ в быту и на производстве;

Построить прибор для обнаружения СЭ;

Исследовать полезные свойства СЭ и опасности связанные с его накоплением;

Поставить эксперименты по получению и использованию СЭ;

Сделать вывод по исследованию СЭ и применить полученный опыт.

Предмет исследования: причины возникновения и накопления СЭ, возможные пути предотвращения накопления СЭ, способы его утилизации и варианты использования СЭ на благо человечества. Объектом исследования является статическое электричество.

Гипотеза: изучив источники возникновения, свойства, принцип действия и существующие способы применения статического электричества, мы попытаемся поставить его на службу человечества.

Новизна: научно-обоснованное использование статического электричества - нового возобновляемого источника энергии.

Глава I

1.1 Определение и свойства.

Стати́ческое электри́чество — совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объёме диэлектриков или на изолированных проводниках.

Обычно атом находится в равновесном состоянии благодаря одинаковому числу положительных и отрицательных частиц - протонов и электронов. Электроны могут легко перемещаются от одного атома к другому. При этом они формируют положительные (где отсутствует электрон) или отрицательные (одиночный электрон или атом с дополнительным электроном) ионы. Когда происходит такой дисбаланс, возникает статическое электричество.

1.2 Причины возникновения и способы проявления.

Основным причинами возникновения СЭ можно назвать:

Контакт между двумя материалами и их отделение друг от друга (включая трение, намотку/размотку и пр.).

Быстрый температурный перепад (например, в момент помещения материала в духовой шкаф).

Радиация с высокими значениями энергии, УФ излучение, рентгеновские X-лучи, сильные электрические поля.

Резательные операции (например, на раскроечных станках).

Наведение (вызванное статическим зарядом возникновение электрического поля).

Поверхностный контакт и разделение материалов, возможно, являются наиболее распространенными причинами возникновения статического электричества на производствах, связанных с обработкой рулонных пленок и листовых пластиков. Статический заряд генерируется в процессе разматывания/наматывания материалов или перемещения друг относительно друга различных слоев материалов.

1.3 Проблемы и опасности, связанные со статическим электричеством

Если объект имеет способность накапливать значительный заряд, и если имеет место высокое напряжение, статическое электричество приводит к возникновению таких серьезных проблем, как искрение, электростатическое отталкивание/притягивание или электропоражение персонала.

Статический разряд в электронике. Ток разряда порождает тепло, которое приводит к разрушению соединений, прерыванию контактов и разрыву дорожек микросхем. Высокое напряжение уничтожает также тонкую оксидную пленку на транзисторах.

Электростатическое притяжение/отталкивание. Это наиболее широко распространенная проблема, возникающая на предприятиях, связанных с производством и обработкой пластмасс, бумаги, текстиля и в смежных отраслях. Она проявляется в том, что материалы самостоятельно меняют свое поведение - склеиваются между собой или, наоборот, отталкиваются, прилипают к оборудованию, притягивают пыль, неправильно наматываются на приемное устройство и пр.

Риск возникновения пожара. Риск возникновения пожара не является общей для всех производств проблемой. Но вероятность возгорания очень велика на полиграфических и других предприятиях, где используются легковоспламеняющиеся растворители.

Статический удар. Если человек находится в электрическом поле и держится за заряженный объект, например, за намоточную бобину для пленки, возможно, что его тело зарядится и позже разрядится о заземленный объект, нанося электрическое поражение. Помимо этого, если металлический незаземленный объект находится в электрическом поле, он может зарядиться наведенным зарядом. По причине того, что металлический объект является токопроводящим, подвижный заряд разрядится в человека, который дотрагивается до объекта.

Глава II

2.1 Статическое электричество на службе у человека.

Статическое электричество в технике. Когда электризация тел полезна

Статическое электричество может быть верным помощником человека, если изучить его закономерности и правильно их использовать. Давайте рассмотрим некоторые существующие способы применения СЭ.

Маляр без кисточки

Движущиеся на конвейере окрашиваемые детали, например корпус автомобиля, заряжают положительно, а частицам краски придают отрицательный заряд, и они устремляются к положительно заряженной детали. Слой краски на ней получается тонкий, равномерный и плотный. Действительно одноименно заряженные частицы красителя отталкиваются друг от друга — отсюда равномерность окрашивающего слоя. Частицы, разогнанные электрическим полем, с силой ударяются об изделие — отсюда плотность окраски. Расход краски снижается, так как она осаждается только на детали. Метод окраски изделий в электрическом поле сейчас широко применяют в нашей стране.

Электрические копчености

Копчение — это пропитывание продукта древесным дымом. Частицы дыма не только придают продуктам вкус, но и предохраняют их от порчи. При электрокопчении частицы коптильного дыма заряжают положительно, а отрицательным электродом служит, например, тушка рыбы. Заряженные частички дыма оседают на поверхности тушки и частично поглощаются ею. Все электрокопчение продолжается несколько минут; прежде копчение считалось длительным процессом.

Электрический ворс

Чтобы получить в электрическом поле слой ворса на каком-либо материале, надо материал заземлить, поверхность покрыть клеящим веществом, а затем через заряженную металлическую сетку, расположенную над этой поверхностью, пропустить порцию ворса. Ворсинки быстро ориентируются в поле и, распределяясь равномерно, оседают на клей строго перпендикулярно поверхности. Так получают покрытия, похожие на замшу или бархат. Легко получить разноцветный узор, заготовив порции разного по цвету ворса и несколько шаблонов, которыми в процессе электроворсования прикрывают поочередно отдельные участки изделия. Так можно сделать многоцветные ковры.

Как ловят пыль

Чистый воздух нужен не только людям и особо точным производствам. Все машины из-за пыли преждевременно изнашиваются, а каналы их воздушного охлаждения засоряются. Кроме того, часто пыль, улетающая с отходящими газами, представляет собой ценное сырье. Очистка промышленных газов стала необходимостью. Практика показала, что с этим хорошо справляется электрическое поле. В электрическом поле газ в трубе ионизируется. Под воздействием поля частицы сажи движутся к трубе и осаждаются на ней, а очищенный газ выходит в атмосферу. Трубу время от времени встряхивают, и уловленные частицы поступают в бункер. Электрические фильтры на крупных тепловых электростанциях улавливают 99% золы, содержащейся в выходных газах.

Смешение веществ

Если мелкие частицы одного вещества зарядить положительно, а другого — отрицательно, то легко получить их смесь, где частицы распределены равномерно. Например, на хлебозаводе теперь не приходится совершать большую механическую работу, чтобы замесить тесто. Заряженные положительно крупинки муки воздушным потоком подаются в камеру, где они встречаются с отрицательно заряженными капельками воды, содержащей дрожжи. Крупинки муки и капельки воды, притягиваясь друг к другу, образуют однородное тесто.

2.2. Эксперименты со статическим электричеством.

Детектор СЭ.

Для обнаружения статического электричества мы будем использовать статическое поле, образуемое им. Из выше сказанного следует, что, чтобы навести статический заряд, достаточно поместить предмет в статическое поле. Получая одноименный заряд, разные части этого предмета начинают отталкиваться друг от друга. Мы используем две довольно легкие пластины фольги, чтобы обнаружить даже небольшой заряд, проводник к ним, а также экранирующую колбу. (рис. 1)

Статическое электричество из янтаря.

Древнейший из опытов с электричеством. Когда-то люди еще не знали, что такое электричество или электрон, в нашем сегодняшнем понимании. Однако, они знали слово “электрон”, что в переводе с греческого означает янтарь. Именно на разряде наэлектролизованного янтаря древние люди влервые увидели электроны, летящие скрозь воздух. Гораздо позже, когда электрон-частица был открыт, ему дали имя электрона-янтаря в честь того самого, тогда необъяснимого явления.

Мы натрем янтарь шерстяным носком, вследствие чего он получит заряд. Поднесем его к металлическому предмету и увидим разряд.

Левитирующее кольцо.

Для этого опыта нам понадобятся: воздушный шар, ворсистая ткань, отрезок “дождика”.

Связываем два конца отрезка дождика, получается кольцо. Берем надутый шар у основания, максимально далеко от места, которое будем электролизовать с помошью ткани. Натираем “макушку” шара. Он получил заряд, что можно проверить поднеся шар к волосам. Далее бросаем на шар кольцо. Важно не дотрагиваться до кольца в момент касания им шара.

И, кольцо парит над шаром, имея с ним одинаковый заряд. Более того, кольцо приняло почти идеальную круглую форму, поскольку каждая его часть стремиться улететь от другой.

2.3. Выводы и предложения.

У каждого из нас дома несколько десятков электрических розеток. Современная розетка - трехконтактная. Два контакта - по которым течет электрический ток. Третий контакт используется для снятия статического электричества. Оно просто утилизируется в землю. В масшабах квартиры это небольшие заряды или потенциалы, но в масштабах многоквартирного дома или целого квартала - это Мегавольты электроэнергии. На предприятиях этот показатель гораздо больше. Все, что связано с трением, намоткой и разделением генерирует Гигавольты и десятки Гигавольт потенциала, которые тоже бесцельно утилизируются.

Обратно в электросеть вернуть это электричество довольно сложно, хотя есть и такие разработки. Однако, и разбрасываться таким потенциалом чересчур расточительно. Мы бы хотели предложить необычный способ применения статического электричества:

Сборка сложных молекул , например белков. Начинаем с простых молекул и, постепенно, “приклеиваем” к нему нужные нам вещества, заряжая то те то другие нужными нам зарядами. Так можно построить молекулу без сложных химических реакций и долгих биологических процессов. Представьте, что с одной стороны наша простая молекула, а с другой в отдельных контейнерах разные вещества из таблицы Менделеева. С помощью статического поля мы поворачиваем нашу молекулу нужным боком, заряжаем ее; а на вещество из таблицы менделеева подаем противоположный заряд. Оно движется в статическо поле и присоединяется к нашей молекуле в нужное место. И так далее, пока не получиться нужная нам сложная молекула.

Заключение

Что ж, пришло время подвести итоги. Мы изучили теоретические основы статического электричества. Раскрыли содержание определения статического электричества. Узнали, что заряд может образовываться на диэлетриках, совершенно не проводящих электричество, но способных быть причиной его возникновения. Узнали, что единицей заряда является куллон, и самый маленький заряд в природе - (- или +)1,6х10 -19 - это заряд электрона и протона. Далее мы изучили все возможные способы проявления статического электричества в повседневной жизни человека и на производственных предприятиях. Узнали чем оно опасно и что можно предпринять, чтобы исключить возможный материальный ущерб или причение вреда жизни и здоровью человека.

Далее выяснили каким образом СЭ помогает человеку: позволяет нам красить сухой краской, придать более насыщенный вкус продуктам, создать необычные материалы для одежды и обуви, избавить промышленные предприятия от вредных выбросов, смешать разнородные вещества более быстро и качественно.

Затем мы построили прибор для обнаружения электростатического поля из подручных материалов. Это прототип прибора для измерения электрического заряла - электрометра. Показали как этектростатический заряд может поляризовать прибор посредством поля и передать часть своего заряда ему посредством разряда.

Мы провели наглядные опыты, иллюстрирующие электростатический разряд и электростатическое притяжение/отталкивание.

На основании изученного материала и полученного в ходе экспериментов опыта, нами было разработано предложение по сборке сложных молекул из простых.

Тема электричества и статического электричества в частности интересовала ученых всегда. Величайшие умы занимались выведением законов и изобретением установок в этой области на протяжении веков. Но, по нашему мнению, истинный потенциал кулоновских ваимодействий еще не раскрыт. Если весь Мир держится за счет только положительных и отрицательных зарядов, значит энергия их - почти безгранична. Надо просто правильно научиться ей пользоваться. И, возможно уже в следующем столетии, мы будем жить без автомобильных выхлопов, заводов, коптящих трубами, химических выбросов в атмосферу и воду, бездумного расходования водных ресурсов, ради добычи нефти или производства картона... Нужно просто немного подумать. Давайте селаем это вместе. Спасибо за внимание!

Список источников и литературы

Гудилин Е. А. Самосборка “Словарь нанотехнологических терминов” Роснано, 2012 г.

Казанжи К. К. “Статическое электричество. Новое в жизни, науке, технике М:, Знание, 1965 г.

https://ru.wikipedia.org/wiki/Ампер,_Андре-Мари

https://ru.wikipedia.org/wiki/Вольта,_Алессандро

https://ru.wikipedia.org/wiki/Гилберт,_Уильям

https://ru.wikipedia.org/wiki/Кулон,_Шарль_Огюстин_де

https://ru.wikipedia.org/wiki/Статическое_электричество

Под статическим электричеством понимают совокупность явлений, связанных с возникновением и релаксацией свободного электрического заряда на поверхности, или в объеме диэлектриков, или на изолированных проводниках.

Образование и накопление зарядов на перерабатываемом материале связано с двумя условиями. Во-первых, должен произойти контакт поверхностей, в результате которого образуется двойной электрический слой. Во-вторых, хотя бы одна из контактирующих поверхностей должна быть из диэлектрического материала. Заряды будут оставаться на поверхности после их разделения только в том случае, если время разрушения контакта меньше времени релаксации зарядов. Последнее, в значительной степени, определяет величину зарядов на разделенных поверхностях.

Двойной электрический слой - это пространственное распределение электрических зарядов на границах соприкосновения двух фаз. Такое распределение зарядов наблюдается на границе металл - металл, металл - вакуум, металл - газ, металл - полупроводник, металл - диэлектрик, диэлектрик - диэлектрик, жидкость - твердое тело, жидкость - жидкость, жидкость - газ.

Основная величина, характеризующая способность к электризации, - удельное электрическое сопротивление поверхностей контактируемых материалов. Если контактирующие поверхности имеют низкое сопротивление, то при разделении заряды с них стекают и раздельные поверхности несут незначительный заряд. Если же сопротивление высокое или велика скорость отрыва поверхностей, то заряды будут сохраняться.

Следовательно, основные факторы, влияющие на электризацию веществ, - их электрофизические параметры и скорость разделения.

Условно принято, что при удельном электрическом сопротивлении материалов менее 10 5 Ом м заряды не сохраняются и материалы не электризуются.

Опытами установлено, что при соприкосновении (трении) двух диэлектриков тот из них, который имеет большее значение диэлектрической проницаемости, заряжается положительно, в то время как материал с меньшей диэлектрической проницаемостью заряжается отрицательно.

Под разрядами статистического электричества понимают процессы выравнивания зарядов между отдельными твердыми телами, несущими разные электростатические заряды. Они обычно сопровождаются скользящими, коронными, искровыми разрядными явлениями. При возникновении искр могут воспламениться горючие газы или пары, или инициироваться взрывоопасные смеси, а вызванные разрядами электромагнитные поля могут повредить электронные элементы, вывести из строя или нарушить функции электронного оборудования.

Заряды статического электричества, вызывающие опасные воздействия, могут возникать различными путями. Однако при изготовлении и применении электронных элементов и приборов существенны два механизма электризации: за счет индукции и трения.

Токи в процессе зарядки составляют от сотен пикоампер до нескольких микроампер, а электростатические заряды - от 3 нКл до 5 мкКл. Электростатическая разность потенциалов между телами определяется после окончания процесса зарядки отношением приобретенного заряда Q к емкости C AB тел между собой:

U AB =Q/C AB .

Рис. 3.11 иллюстрирует влияние используемых материалов, а также относительной влажности воздуха на величину напряжения, которое может быть получено при электризации.

Таблица 3.1. Ориентировочные значения напряжений статических зарядов при относительной влажности воздуха 24 % и температуре 21 0 С

С электронными деталями, элементами и приборами необходимо особенно осторожное обращение, чтобы избежать их повреждения из-за электростатических явлений.

Особое значение при обращении с электронными приборами имеет возможный электростатический заряд тела человека, попадающий на переключающие схемы, печатные платы, элементы управления, корпусы приборов при их транспортировке, монтаже, испытаниях, эксплуатации, ремонте и сервисном обслуживании. Тело человека обладает ёмкостью относительно земли пФ. Если человек идет по полу с синтетическим покрытием, то эта емкость может зарядиться приблизительно до U max =15 кВ, накопленная энергия

При приближении человека к заземленному корпусу электронного прибора произойдет искровой разряд, и так как обычно соблюдается условие

то будет иметь место апериодический процесс.

Наиболее сильное воздействие разрядов статистического электричества получается тогда, когда в руке имеется металлический предмет (ключ, отвёртка, проводящие браслеты и т.д.). В этом случае крутизна тока, определяющая индуктированные напряжения помех, может достигать 100 А/нс.

Наблюдаются также разряды статистического электричества в компьютерных залах, кабинетах управления, испытательных помещениях с подвижных предметов (кресел, приборных тележек, полок с печатной бумагой, пылесосов) на корпусы электронных приборов при их случайном касании.

Каждый разряд статистического электричества сопровождается электрическими и магнитными полями.

При этом в непосредственной близости от разряда создаётся электрическое поле 4 кВ/м на расстоянии до 10 см и 1 кВ/м на расстоянии 20 см. Аналогично, магнитное поле равно 15 А/м на расстоянии 10 см и 4 А/м на расстоянии 20 см.

При разряде статистического электричества чаще всего наблюдаются сбои в работе высокоскоростных цифровых узлов, а также цифровых интерфейсных элементов. При подаче на разъёмы, клавиатуры, элементы индикации и т.п. возможно физическое повреждение интерфейсных элементов.

Особенно опасно воздействие разрядов статического электричества на незащищенные узлы аппаратуры. Поэтому при любых ремонтных и наладочных работах нужно соблюдать требования электростатической безопасности. При профессиональной сборке аппаратуры используют антистатические покрытия и т.п. В условиях эксплуатации эти требования удаётся выполнить не всегда. Однако минимальные меры предосторожности соблюдать всё же стоит: например, перед прикосновением к узлам аппаратуры следует дотронутся до заземленных металлоконструкций, что позволит снять избыточный заряд.

Понравилась статья? Поделитесь ей