Контакты

Краткое описание подцарства многоклеточные. Многоклеточные организмы: признаки и развитие Как появились первые многоклеточные организмы

Все живые организмы разделяются на подцарства многоклеточных и одноклеточных существ. Последние представляют собой одну клетку и относятся к простейшими, в то время как растения и животные являются теми структурами, в которых веками развивалась более сложная организация. Количество клеток варьируется в зависимости от разновидности, к которой относится особь. Размер большинства настолько мал, что увидеть их можно только под микроскопом. Клетки появились на Земле примерно 3,5 миллиарда лет назад.

В наше время все процессы, происходящие с живыми организмами, изучает биология. Подцарством многоклеточных и одноклеточных занимается именно эта наука.

Одноклеточные организмы

Одноклеточность определяется наличием в организме единственной клетки, которая выполняет все жизненные функции. Всем известные амеба и инфузория-туфелька представляют собой примитивные и, вместе с тем, древнейшие формы жизни, которые являются представителями этого вида. Они были первыми живыми существами, что обитали на Земле. Сюда же входят такие группы, как споровики, саркодовые и бактерии. Все они малы и в основном невидимы для невооруженного глаза. Их принято разделять на две общие категории: прокариотические и эукариотические.

Прокариоты представлены простейшими или грибами некоторых видов. Кто-то из них живет колониями, где все особи одинаковы. Весь процесс жизни осуществляется в каждой отдельной клетке для того, чтобы она выжила.

Прокариотические организмы не имеют связанных мембранами ядер и клеточных органелл. Это обычно бактерии и цианобактерии, такие как кишечная палочка, сальмонеллы, ностоки и др.

Все представители этих групп различаются по размеру. Самая малая бактерия имеет длину всего 300 нанометров. Одноклеточные обычно обладают специальными жгутиками или ресничками, которые участвуют в их передвижении. Они имеют простое тело с выраженными основными чертами. Питание, как правило, происходит в процессе поглощения (фагоцитоза) пищи и хранится в специальных органоидах клетки.

Одноклеточные доминировали как форма жизни на Земле в течение миллиардов лет. Однако эволюция от простейших к более сложным особям изменила весь ландшафт, поскольку она привела к зарождению биологически развитых связей. Кроме того, появление новых видов привело к образованию новой среды с разнообразными экологическими взаимодействиями.

Многоклеточные организмы

Основной характеристикой подцарства многоклеточных является наличие в одном индивидууме большого количества клеток. Они скрепляются между собой, тем самым создавая совершенно новую организацию, которая состоит из множества производных частей. Основное количество из них можно увидеть без каких-то специальных приборов. Растения, рыбы, птицы и животные выходят из единственной клетки. Все существа, входящие в подцарство многоклеточных, регенерируют новые особи из зародышей, которые формируются из двух противоположных гамет.

Любая часть особи или цельный организм, который определяется большим количеством составляющих, является сложной, высоко развитой структурой. В подцарстве многоклеточных классификация четко разделяет функции, при которых каждая из отдельных частиц выполняет свою задачу. Они занимаются процессами жизнедеятельности, поддерживая этим существование всего организма.

Подцарство Многоклеточные на латыни звучит как Metazoa. Чтобы сформировать сложный организм, клетки нужно идентифицировать и присоединить к другим. Только с десяток простейших можно заметить индивидуально невооруженным глазом. Остальные почти два миллиона видимых особей являются многоклеточными.

Плюрицеллюлярные животные созданы результатом объединения особей путем образования колоний, нитей или агрегации. Плюрицеллюлярные развивались самостоятельно, вроде вольвокса и некоторых жгутиковых зеленых водорослей.

Признаком подцарства многоклеточных, то есть его ранних примитивных видов, было отсутствие костей, раковин и других твердых частей тела. Поэтому их следов не сохранилось до наших дней. Исключением являются губки, обитающие в морях и океанах до сих пор. Возможно, их останки находятся в каких-нибудь древних скалах, как, например, Grypania spiralis, окаменелости которых найдены в древнейших слоях черного сланца, относящегося к раннепротерозойской эре.

В находящейся ниже таблице подцарство многоклеточных представлено во всем его многообразии.

Сложные взаимосвязи возникли в результате эволюции простейших и появления способности клеток разделяться по группам и организовывать ткани и органы. Существует много теорий, объясняющих механизмы, с помощью которых одноклеточные могли эволюционировать.

Теории возникновения

На сегодняшний день существуют три основных теории возникновения подцарства многоклеточных. Краткое содержание синцитиальной теории, чтобы не углубляться в подробности, можно описать в нескольких словах. Суть ее состоит в том, что примитивный организм, который имел в своих клетках несколько ядер, мог со временем разделить внутренней мембраной каждое из них. Например, несколько ядер содержит грибок плесени, а также инфузория-туфелька, чем подтверждают эту теорию. Однако наличия нескольких ядер недостаточно для науки. Чтобы подтвердить теорию их множественности, необходимо наглядное превращение в хорошо развитое животное простейшего эукариота.

Теория колоний говорит, что симбиоз, состоящий из разных организмов одного вида, привел к их изменению и появлению более совершенных существ. Геккель — первый ученый, кто представил эту теорию в 1874 году. Сложность организации возникает потому, что клетки остаются вместе, а не разъединяются в процессе деления. Примеры этой теории можно увидеть у таких простейших многоклеточных, как зеленые водоросли, которые называются эвдорина или вольвакса. Они образуют колонии, которые насчитывает до 50000 клеток в зависимости от вида.

Теория колоний предлагает слияние различных организмов одного вида. Преимущество этой теории заключается в том, что было замечено, как во время нехватки продовольствия амебы группируются в колонию, которая передвигается словно единое целое, в новое место. Какие-то из этих амеб немного отличаются друг от друга.

Однако проблема этой теории заключается в том, что неизвестно, как ДНК разных особей могут быть включены в единый геном.

Например, митохондрии и хлоропласты могут быть эндосимбионтами (организмами в организме). Это случается крайне редко, и даже тогда геномы эндосимбионтов сохраняют между собой различия. Они отдельно синхронизируют свою ДНК во время митоза видов хозяев.

Два или три симбиотических индивидуума, образующих лишайник, хотя и зависят друг от друга ради выживания, но должны отдельно размножаться, а затем повторно соединяться, снова создавая единый организм.

Другие теории, которые также рассматривают возникновение подцарства многоклеточных:

  • Теория GK-PID. Около 800 миллионов лет назад незначительное генетическое изменение в одной молекуле под названием GK-PID, возможно, позволило особям перейти от одной клетки к более сложной структуре строения.
  • Роль вирусов. Недавно было признано, что гены, позаимствованные у вирусов, играют решающую роль в делении тканей, органов и даже при половом размножении, при слиянии яйцеклетки и сперматозоида. Был найден первый белок syncytin-1, который передался от вируса к человеку. Он находится в межклеточных мембранах, которые разделяют плаценту и мозг. Второй белок был выявлен в 2007 году и назван EFF1. Он помогает формировать кожу круглых червей нематод и является частью целого семейства белков FF. Доктор Феликс Рей в Институте Пастера в Париже построил 3D-макет структуры EFF1 и показал, что это он связывает частицы вместе. Этот опыт подтверждает тот факт, что все известные слияния мельчайших частиц в молекулы имеют вирусное происхождение. Это также говорит о том, что вирусы были жизненно важны для коммуникации внутренних структур, и без них было бы невозможным появления колонии подцарства многоклеточных типа губок.

Все эти теории, как и многие другие, которые продолжают предлагать известные ученые, очень интересны. Однако ни одна из них не может четко и однозначно ответить на вопрос: как из единственной клетки, которая зародилась на Земле, могло появиться такое огромное разнообразие видов? Или: почему одиночные особи решили объединиться и стали существовать вместе?

Может, пройдет несколько лет, и новые открытия смогут нам дать ответы на каждый из этих вопросов.

Органы и ткани

Сложные организмы имеют такие биологические функции, как защита, кровообращение, пищеварение, дыхание и половое размножение. Они выполняются определенными органами, такими как кожа, сердце, желудок, легкие и половая система. Они состоят из множества различных типов клеток, которые работают сообща для выполнения конкретных задач.

Например, сердечная мышца имеет большое количество митохондрий. Они производят аденозинтрифосфат, благодаря которому кровь беспрерывно движется по кровеносной системе. У клеток кожи, наоборот, меньше митохондрий. Вместо этого они имеют плотные белки и производят кератин, который защищает мягкие внутренние ткани от повреждений и внешних факторов.

Размножение

В то время как все без исключения простейшие организмы размножаются бесполым путем, многие из подцарства многоклеточных предпочитают половое размножение. Люди, например, являются сложнейшей структурой, созданной путем слияния двух одиночных клеток, называемых яйцеклеткой и сперматозоидом. Слияние одной яйцеклетки с гаметой (гаметы - это специальные половые клетки, содержащие один набор хромосом) сперматозоида приводит к образованию зиготы.

Зигота содержит генетический материал как спермы, так и яйцеклетки. Деление ее приводит к развитию абсолютно нового, отдельного организма. Во время развития и деления клетки, согласно заложенной в генах программе, начинают дифференцироваться по группам. Это в дальнейшем позволит им выполнять совершенно разные функции, несмотря на то что они генетически идентичны друг другу.

Таким образом, все органы и ткани организма, которые образуют нервы, кости, мышцы, сухожилия, кровь, — все они возникли из одной зиготы, появившейся благодаря слиянию двух одиночных гамет.

Преимущество многоклеточных

Есть несколько основных преимуществ подцарства многоклеточных организмов, благодаря которым они доминируют на нашей планете.

Поскольку сложное внутреннее строение позволяет увеличить размер, оно также помогает развивать структуры и ткани более высокого порядка с многочисленными функциями.

Крупные организмы имеют лучшую защиту от хищников. Они также обладают большей мобильностью, что позволяет им мигрировать в более благоприятные для проживания места.

Есть еще одно неоспоримое преимущество подцарства многоклеточных. Общая характеристика всех его видов — это достаточно долгая продолжительность жизни. Тело клетки подвергается воздействию окружающей среды со всех сторон, и любое ее повреждение может привести к гибели индивидуума. Многоклеточный организм будет продолжать существовать, даже если одна клетка погибнет или будет повреждена. Дублирование ДНК также является преимуществом. Деление частиц внутри организма позволяет быстрее расти и восстанавливаться поврежденным тканям.

Во время своего деления новая клетка копирует прежнюю, что позволяет сохранить благоприятные черты в следующих поколениях, а также со временем их усовершенствовать. Другими словами, дублирование позволяет сохранить и адаптировать черты, которые улучшат выживание или пригодность организма, особенно в царстве животных, подцарстве многоклеточных.

Недостатки многоклеточных

У сложных организмов имеются и недостатки. Например, они подвержены различным заболеваниям, возникающим из-за комплексного биологического состава и функций. У простейших, наоборот, не хватает развитых систем органов. Это означает, что риски опасных болезней у них сведены к минимуму.

Важно отметить, что в отличие от многоклеточных, примитивные особи обладают способностью к бесполому размножению. Это помогает им не тратить ресурсы и энергию на поиски партнера и сексуальную деятельность.

Простейшие организмы также обладают способностью принимать энергию путем диффузии или осмоса. Это освобождает их от необходимости передвижения для поиска пищи. Практически все может стать потенциальным источником пищи для одноклеточного существа.

Позвоночные и беспозвоночные

Всех без исключения входящих в подцарство многоклеточных существ классификация делит на два вида: позвоночных (хордовых) и беспозвоночных.

У беспозвоночных нет твердого каркаса, в то время как хордовые имеют хорошо развитый внутренний скелет хряща, кости и высокоразвитый мозг, который защищен черепом. Позвоночные имеют прекрасно развитые органы чувств, дыхательную систему с жабрами или легкими и развитую нервную систему, что еще больше отличает их от более примитивных собратьев.

Оба типа животных живут в различных местах обитания, но хордовые, благодаря развитой нервной системе, могут адаптироваться к суше, морю и воздуху. Тем не менее, беспозвоночные также встречаются в широком диапазоне, от лесов и пустынь до пещер и грязи морского дна.

На сегодняшний день выявлено почти два миллиона видов подцарства многоклеточных беспозвоночных животных. Эти два миллиона составляют около 98 % от всех живых существ, то есть 98 из 100 видов проживающих в мире организмов — беспозвоночные. Человеческие особи относятся к семейству хордовых.

Позвоночные подразделяются на рыб, земноводных, рептилий, птиц и млекопитающих. Не имеющие позвоночника животные представляют такие типы, как членистоногие, иглокожие, черви, кишечнополостные и моллюски.

Одним из самых главных различий между этими видами является их размер. Беспозвоночные, такие как насекомые или кишечнополостные, малы и медлительны, потому что не могут развить крупное тело и сильные мышцы. Есть несколько исключений, таких как кальмар, который может достигать 15 метров в длину. Позвоночные имеют универсальную систему поддержки, а потому могут быстрее развиваться и становиться крупнее, чем беспозвоночные.

Хордовые имеют также высокоразвитую нервную систему. С помощью специализированной связи между нервными волокнами, они могут реагировать очень быстро на изменения в окружающей среде, что дает им несомненное преимущество.

По сравнению с позвоночными, большинство животных, не имеющих хребта, используют простую нервную систему и ведут себя почти полностью инстинктивно. Подобная система работает хорошо большую часть времени, хотя эти существа часто неспособны учиться на своих ошибках. Исключениями являются осьминоги и их близкие родственники, которые считаются одними из самых умных животных в мире беспозвоночных.

У всех хордовых, как нам известно, имеется позвоночник. Однако особенностью у подцарства многоклеточных беспозвоночных животных является сходство с их сородичами. Оно заключается в том, что на определенном этапе жизни позвоночные также имеют гибкий опорный стержень, нотохорд, который впоследствии становится позвоночником. Первая жизнь развивалась в виде одиночных клеток в воде. Беспозвоночные были начальным звеном эволюции других организмов. Их постепенные изменения привели к появлению сложных существ с хорошо развитым скелетом.

Кишечнополостные животные

Сегодня насчитывается около одиннадцати тысяч видов кишечнополостных. Это одни из самых древнейших сложных животных, появившихся на земле. Самых маленьких из кишечнополостных невозможно увидеть без микроскопа, а самая большая известная медуза — 2,5 метра в диаметре.

Итак, давайте подробнее познакомимся с подцарством многоклеточных, типом кишечнополостные. Описание основных характеристик мест обитания можно определить наличием водной или морской среды. Они живут одиночно или в колониях, которые могут свободно передвигаться или жить на одном месте.

Форма тела кишечнополостных называется «мешком». Рот соединяется со слепым мешком, который называется «гастроваскулярной полостью». Этот мешок функционирует в процессе пищеварения, газообмена и действует как гидростатический скелет. Единственное отверстие служит как ртом, так и задним проходом. Щупальца — длинные, полые структуры, используются для перемещения и захвата пищи. Все кишечнополостные имеют щупальца, покрытые присосками. Они оснащены специальными клетками — немоцистами, которые могут впрыскивать токсины в свою жертву. Присоски также позволяют захватывать крупную добычу, которую животные помещают в рот путем втягивания щупалец. Нематоцисты отвечают за ожоги, которые некоторые медузы наносят людям.

Животные подцарства многоклеточные, типа кишечнополостные обладают как внутриклеточным, так и внеклеточным пищеварением. Дыхание происходит путем простой диффузии. У них имеется сеть нервов, которые распространяются по всему телу.

Многие формы проявляют полиморфизм, то есть разнообразие генов, в котором различные типы существ присутствуют в колонии для различных функций. Эти особи называются зооидами. Воспроизводство можно называть беспорядочным (внешнее почкование) или половым (формирование гамет).

Медузы, например, производят яйцеклетки и сперматозоиды, а затем выпускают их в воду. Когда яйцо оплодотворено, оно развивается в свободно плавающую личинку с ресничками, называемую «планлой».

Типичными примерами подцарства Многоклеточные типа кишечнополостные являются гидры, обелия, португальский кораблик, парусница, медуза-аурелия, медуза-кочан, актинии, кораллы, морское перо, горгонарии и т. д.

Растения

В подцарстве Многоклеточные растения - это эукариотические организмы, способные питаться в процессе фотосинтеза. Водоросли изначально считались растениями, но теперь они относятся к протистам — особой группе, которая исключена из всех известных видов. Современное определение растений относится к организмам, которые живут в основном на суше (а иногда и в воде).

Другой отличительной особенностью растений является зеленый пигмент — хлорофилл. Он используется для поглощения солнечной энергии в процессе фотосинтеза.

У каждого растения есть гаплоидные и диплоидные фазы, которые характеризуют его жизненный цикл. Он называется чередованием поколений, потому что все фазы в нем являются многоклеточными.

Живой мир наполнен головокружительным множеством живых существ. Большинство организмов состоят только из одной клетки и не видимы невооруженным глазом. Многие из них становятся заметными исключительно под микроскопом. Другие, такие как кролик, слон или сосна, а также человек, сделаны из многих клеток, и эти многоклеточные организмы также в огромном количестве населяют весь наш мир.

Строительные блоки жизни

Структурными и функциональными единицами всех живых организмов являются клетки. Их еще называют строительными блоками жизни. Все живые организмы состоят из клеток. Эти структурные единицы были открыты Робертом Гуком еще в 1665 году. В организме человека насчитывается около ста триллионов клеток. Размер одной составляет около десяти микрометров. Ячейка содержит клеточные органеллы, которые контролируют ее активность.

Существуют одноклеточные и многоклеточные организмы. Первые состоят из одной клетки, например бактерии, а вторые включают растения и животных. Количество ячеек зависит от вида. Размер большинства клеток растений и животных клетках составляет от одного до ста микрометров, поэтому они видны под микроскопом.

Одноклеточные организмы

Эти крошечные существа состоят из одной клетки. Амебы и инфузории являются самыми старыми формами жизни, которые существовали еще около 3,8 миллиона лет назад. Бактерии, археи, простейшие, некоторые водоросли и грибы являются основными группами одноклеточных организмов. Существует две основные категории: прокариоты и эукариоты. Они также различаются по размеру.

Самые маленькие составляют около трехсот нанометров, а некоторые могут достигать размеров до двадцати сантиметров. Такие организмы обычно имеют реснички и жгутики, которые помогают им при перемещении. Они имеют простой корпус с базовыми функциями. Размножение может быть как бесполое, так и половое. Питание осуществляется обычно в процессе фагоцитоза, где частицы еды поглощаются и хранятся в специальных вакуолях, которые присутствуют в организме.

Многоклеточные организмы

Живые существа, состоящие из более чем одной клетки, называются многоклеточными. Они состоят из единиц, которые идентифицируются и присоединяются друг к другу, образуя сложные многоклеточные организмы. Большинство из них видны невооруженным глазом. Такие организмы, как растения, некоторые животные и водоросли, появляются из одной клетки и вырастают в многоцепочечные организации. Обе категории живых существ, прокариоты и эукариоты, могут проявлять многоклеточность.

Механизмы возникновения многоклеточности

Существует три теории для обсуждения механизмов, с помощью которых может возникнуть многоклеточность:

  • Симбиотическая теория утверждает, что первая клетка многоклеточного организма возникла из-за симбиоза различных видов одноклеточных, каждый из которых выполняет различные функции.
  • Синцитиальная теория утверждает, что многоклеточный организм не смог бы развиться из одноклеточных существ с несколькими ядрами. Такие простейшие, как инфузория и слизистые грибы, имеют несколько ядер, тем самым поддерживая эту теорию.
  • Колониальная теория утверждает, что симбиоз многих организмов одного и того же вида приводит к эволюции многоклеточного организма. Она была предложена Геккелем в 1874 году. Большинство многоклеточных образований происходит вследствие того, что клетки не могут отделиться после процесса деления. Примерами, подтверждающими эту теорию, являются водоросли вольвокс и эудорина.

Преимущества многоклеточности

Какие организмы - многоклеточные или одноклеточные - имеют больше преимуществ? На этот вопрос ответить достаточно сложно. Многоклеточность организма позволяет ему превышать предельные размеры, увеличивает сложность организма, позволяя дифференцировать многочисленные клеточные линии. Размножение происходит преимущественно половым путем. Анатомия многоклеточных организмов и процессы, которые в них происходят, являются достаточно сложными из-за наличия различных типов клеток, контролирующих их жизнедеятельность. Возьмем, к примеру, деление. Этот процесс должен быть точным и слаженным, чтобы предотвратить ненормальный рост и развитие многоклеточного организма.

Примеры многоклеточных организмов

Как уже говорилось выше, многоклеточные организмы бывают двух видов: прокариоты и эукариоты. К первому относят в основном бактерий. Некоторые цианобактерии, такие как чара или спирогира, являются также многоклеточными прокариотами, иногда их называют еще колониальными. Большинство эукариотических организмов также состоят из множества единиц. Они имеют хорошо развитую структуру тела, и у них есть специальные органы для выполнения определенных функций. Большинство хорошо развитых растений и животных являются многоклеточными. Примерами могут быть практически всех виды голосеменных и покрытосеменных растений. Почти все животные являются многоклечточными эукариотами.

Особенности и признаки многоклеточных организмов

Существует масса признаков, по которым можно с легкостью определить, является ли организм многоклеточным или нет. Среди можно выделить следующие:

  • У них достаточно сложная организация тела.
  • Специализированные функции выполняют различные клетки, ткани, органы или системы органов.
  • Разделение труда в организме может быть на клеточном уровне, на уровне тканей, органов и уровне систем органов.
  • В основном это эукариоты.
  • Травмы или гибель некоторых клеток глобально не влияет на организм: пораженные клетки будут заменены.
  • Благодаря многоклеточности организм может достигать больших размеров.
  • По сравнению с одноклеточными у них большая продолжительность жизненного цикла.
  • Основной тип размножения - половой.
  • Дифференциация клеток свойственна только многоклеточным.

Как растут многоклеточные организмы?

Все существа, от маленьких растений и насекомых до больших слонов, жирафов и даже людей, начинают свой путь как единичные простые клетки, называемые оплодотворенными яйцами. Чтобы вырасти в большой взрослый организм, они проходят через несколько определенных этапов развития. После оплодотворения яйца начинается процесс многоклеточного развития. На протяжении всего пути происходит рост и многократное деление отдельных ячеек. Эта репликация в конечном итоге создает конечный продукт, который является сложным, полностью сформированным живым существом.

Разделение клеток создает ряд сложных моделей, определяющихся геномами, которые являются практически идентичными во всех клетках. Это разнообразие приводит к экспрессии генов, которая контролирует четыре стадии развития клеток и эмбрионов: пролиферацию, специализацию, взаимодействие и движение. Первая включает в себя репликацию многих клеток из одного источника, вторая имеет отношение к созданию клеток с выделенными, определенными характеристиками, третья включает в себя распространение информации между ячейками, а четвертая отвечает за размещение клеток по всему телу для образования органов, тканей, костей и других физических характеристик развитых организмов.

Несколько слов о классификации

Среди многоклеточных существ выделяют две большие группы:

  • беспозвоночные (губки, кольчатые черви, членистоногие, моллюски и другие);
  • хордовые (все животные, у которых есть осевой скелет).

Важным этапом за всю историю планеты стало появление многоклеточности в процессе эволюционного развития. Это послужило мощным толчком для увеличения биологического разнообразия и его дальнейшего развития. Главным признаком многоклеточного организма является четкое распределение клеточных функций, обязанностей, а также установка и налаживание устойчивых и прочных контактов между ними. Другими словами, это многочисленная колония клеток, которая в силах сохранять фиксированное положение на протяжении всего жизненного цикла живого существа.

Существование клетки зависит от выполнения ею ряда обязательных условий. К ним относятся отграничение от окружающей среды и вместе с тем обмен веществами с этой средой. На основе биохимических механизмов внутри клетки происходят реакции диссимиляции и ассимиляции, образуются химические соединения для выполнения тех или иных функций. В процессе жизнедеятельности возникают вещества, которые подлежат удалению. Приобретение клеткой способности к активному движению облегчает задачу поиска пищи и избегания опасных ситуаций. Сохранение жизни во времени зависит от способности клеток к делению. В ходе эволюции совершенствование жизненно важных функций происходит путем их дифференциации, т.е. обособления. Нередко такое обособление связано с возникновением специальных структур. У одноклеточных организмов, например у инфузории, это проявляется в приобретении некоторыми внутриклеточными структурами специализации (см. рис. 2.2). Так, пищеварительные вакуоли обеспечивают переваривание поступающих извне веществ с утилизацией клеткой необходимых химических соединений и выведением вовне непереваренных остатков. Функция сократительных вакуолей состоит в регулировании водного баланса, ресничек - в обеспечении двигательной активности.

Названная закономерность, проявляющаяся в разделении и специализации функций и структур, представляет собой одно из всеобщих свойств жизни. Возникновение среди живых форм многоклеточных организмов, с которыми связано прогрессивное направление эволюции, является логичным развитием этого свойства. В таких организмах усиление жизненной силы благодаря многократному повторению клеточных механизмов сочетается с широчайшим размахом разделения функций, их совершенствованием, образованием разнообразных специализированных структур - органов и их систем.

Переход к многоклеточности - одновременно и новое качественное состояние жизни, для которого характерно ускорение эволюционных преобразований на основе более полного использования резерва наследственной изменчивости. Это обусловлено, во-первых, объединением у многоклеточных организмов полового процесса и размножения в единое целое - половое размножение (см. гл. 5). Во-вторых, хотя цикл индивидуального развития имеют все живые формы, включая вирусы, только у многоклеточных организмов выделяется эмбриональный период. Значение названного периода заключается в том, что, с одной стороны, в нем отражен весь длительный процесс исторического развития данного биологического вида, с другой - именно путем изменений в ходе эмбриогенеза происходят эволюционные изменения (см. § 13.2).

Отмеченные особенности многоклеточной организации живых существ сделали их основой дальнейшей прогрессивной эволюции. Эволюционными предшественниками многоклеточных организмов были колониальные формы простейших организмов (см. § 13.1). Наиболее ранние ископаемые останки многоклеточных животных имеют возраст около 700 млн. лет. Палеонтологическая летопись свидетельствует о том, что многоклеточные организмы возникали в ходе эволюции от одноклеточных эукариот независимо не менее 17 раз. Из ныне существующих многоклеточных животных губки ведут свою родословную от одного предка, тогда как все другие формы - от какого-то другого. В процессе исторического развития на планете возникло не менее 35 типов многоклеточных организмов. Из них до сих пор существует 26, будучи представленными более чем 2 млн. видов.

Большая международная группа палеонтологов обнаружила в Габоне в отложениях возрастом 2,1 млрд лет ископаемые остатки живых существ сантиметрового размера, напоминающих плоских червей. С большой вероятностью эти организмы были многоклеточными эукариотами. До сих пор древнейшими свидетельствами существования многоклеточной жизни считались спиралевидные углеродистые ленты Grypania возрастом до 1,9 млрд лет, трактуемые как водоросли.

Во времена Дарвина древнейшими известными ископаемыми организмами были обитатели морей кембрийского периода, который, как мы теперь знаем, начался 542 млн лет назад. Докембрийские толщи считались «мертвыми», и Дарвин видел в этом факте серьезный аргумент против своей теории. Он предполагал, что кембрийскому периоду должна была предшествовать длительная эпоха постепенного развития жизни, хотя и не мог объяснить, почему следы этой жизни до сих пор не найдены. Может быть, просто плохо искали?

Развитие палеонтологии в XX веке блестяще подтвердило догадки Дарвина. В докембрийских осадочных толщах обнаружилось множество недвусмысленных признаков существования живых организмов. Подавляющее большинство докембрийских находок - это окаменелые остатки микробов и разнообразные следы их жизнедеятельности.

Самым ранним свидетельством жизни считается облегченный изотопный состав углерода из графитовых включений в кристаллах апатита, найденных в Гренландии в отложениях возрастом 3,8 млрд лет. Древнейшие окаменелости, очень похожие на бактерий, и первые строматолиты - слоистые минеральные образования, возникшие в результате жизнедеятельности микробных сообществ - имеют возраст 3,55–3,4 млрд лет. Следы микробной жизни становятся многочисленнее и разнообразнее по мере уменьшения возраста пород (М. А. Федонкин, 2006. Две летописи жизни: опыт сопоставления (палеобиология и геномика о ранних этапах эволюции биосферы)).

Вопрос о времени появления первых эукариот и первых многоклеточных остается спорным. Большинство современных типов животных стали бурно развиваться только в начале кембрия, однако еще раньше - в вендском, или эдиакарском периоде (635–542 млн лет назад) в морях появились разнообразные и многочисленные мягкотелые существа, в том числе довольно крупные, которые большинством специалистов трактуются как многоклеточные животные (Я. Е. Малаховская, А. Ю. Иванцов. Вендские жители земли ; Тайна эмбрионов Доушаньтуо раскрыта , «Элементы», 12.04.2007). Еще раньше, в криогеновом периоде (850–635 млн лет назад), обнаружены химические следы присутствия примитивных многоклеточных животных - губок.

До-эдиакарские находки макроскопических ископаемых весьма редки и вызывают бурные споры (о некоторых из этих находок рассказано в заметке Животные появились свыше 635 миллионов лет назад , «Элементы», 09.02.2009; там же приведена подборка ссылок по теме). Как правило, чем древнее такие находки, тем они сомнительнее. До сих пор самым древним ископаемым существом, которое можно более или менее уверенно интерпретировать как многоклеточное, считалась грипания (Grypania ). Этот организм сохранился в виде спиралевидных углеродистых лент, напоминающих какую-то водоросль; возраст находок - до 1,9 млрд лет (М. А. Федонкин. Геохимический голод и становление царств ; Размер живых существ увеличивался скачками , «Элементы», 31.12.2008). Впрочем, некоторые авторы считают, что грипания могла быть очень крупной и сложной колонией цианобактерий.

В последнем номере журнала Nature большая группа палеонтологов из Франции, Швеции, Дании, Бельгии, Канады и Германии сообщила о новой уникальной находке, сделанной в раннепротерозойских морских отложениях на юго-востоке Габона. Возраст осадочной толщи, в которой заключены окаменелости, был определен с большой точностью при помощи нескольких независимых радиометрических методов. Он составляет 2100±30 млн лет, то есть на 200 млн лет старше самой древней грипании.

Авторы извлекли из породы более 250 образцов с окаменевшими остатками странных существ продолговатой или почти округлой формы. Их длина варьирует от 7 до 120 мм, ширина - от 5 до 70 мм, толщина - от 1 до 10 мм. Плотность организмов достигает 40 штук на квадратный метр, причем вместе встречаются экземпляры разного размера и ориентации.

При помощи компьютерной рентгеновской томографии авторы получили красивые объемные изображения древних организмов. На них хорошо видна уплощенная волнистая «кайма» с радиальной складчатостью. Складчатая область обычно доходит до внешнего края тела, но у некоторых экземпляров складки заметны только на внутренней части каймы, а у некоторых отсутствуют вовсе.

У многих крупных экземпляров в средней части тела присутствуют включения пирита двух типов: плоские «листы» и округлые гранулы. Анализ изотопного состава серы в этих пиритовых образованиях показал, что «листы» образовались вскоре после смерти организмов в результате деятельности сульфат-редуцирующих бактерий, причем концентрация сульфата в окружающей воде должна была быть довольно высокой. Округлые гранулы образовались на более поздних этапах диагенеза и поэтому не несут информации о форме и строении ископаемых существ. Различия в концентрации стабильного изотопа углерода 13 C в остатках организмов и в окружающей породе дополнительно подтвердили, что эти окаменелости не являются какими-то неорганическими образованиями. В породе обнаружены стераны - органические молекулы, происходящие от эукариотических мембранных стеролов. Это надежный признак присутствия эукариотической жизни.

По мнению авторов, найденные остатки принадлежат колониальным организмам, скорее всего колониальным эукариотам. Колонии бактерий могут иметь похожую форму и фестончатые края, но габонские находки имеют более сложную структуру, чем известные бактериальные колонии. По мнению авторов, структура этих организмов указывает на то, что они росли за счет координированного деления клеток, обменивавшихся сигналами между собой, как это происходит в ходе развития многоклеточных эукариот. К тому же присутствие стеранов недвусмысленно указывает на эукариотическую природу древних существ.

Химический анализ породы показал, что эти морские осадки формировались в присутствии заметных количеств свободного кислорода. Поэтому вполне возможно, что габонские организмы были аэробными (дышали кислородом), как и положено нормальным эукариотам. По современным данным, первое существенное увеличение концентрации кислорода в гидросфере и атмосфере (Great oxygenation event) произошло 2,45–2,32 млрд лет назад, то есть примерно за 200 млн лет до времени жизни габонских организмов.

Авторы воздержались от попыток более точного определения родственных связей новооткрытых существ. Известно, что разные группы эукариот независимо переходили к многоклеточности десятки раз, и найденные в Габоне существа, возможно, представляют собой одну из самых ранних попыток такого рода.

Значимым этапом в истории Земли и эволюции жизни стало возникновение многоклеточности. Это дало мощный толчок к увеличению разнообразия живых существ и их развитию. Многоклеточность сделала возможным специализацию живых клеток в пределах одного организма, включая возникновение отдельных тканей и органов. Первые многоклеточные животные, вероятно, появились в придонных слоях мирового океана в конце протерозоя.
Признаками многоклеточного организма считается то, что его клетки должны быть агрегированы, между ними обязательны разделение функций и установление устойчивых специфических контактов. Многоклеточный организм представляет собой жесткую колонию клеток, в которой сохраняется фиксированное их положение на протяжении всей жизни. В процессе биологической эволюции сходные клетки в теле многоклеточных организмов специализировались на выполнении определенных функций, что привело к формированию тканей и органов. Вероятно, в условиях протерозойского Мирового океана, уже содержавшего примитивные одноклеточные организмы, могла происходить самопроизвольная организация одноклеточных организмов в более высокоразвитые многоклеточные колонии.
Можно только догадываться, какими были первые многоклеточные организмы протерозойской эры. Гипотетическим предком многоклеточных организмов могла быть фагоцителла, которая плавала в толще морской воды за счет биения поверхностных клеток – ресничек кинобласта.
Фагоцителла питалась, захватывая взвешенные в среде частички пищи и переваривая их внутренней клеточной массой (фагоцитобласта). Возможно, именно из кинобласта и фагоцитобласта в процессе эволюционного развития произошло все многообразие форм и тканей многоклеточных организмов. Сама фагоцителла обитала в толще воды, но не имела ни рта, ни кишечника, а ее пищеварение было внутриклеточное. Потомки фагоцителлы приспосабливались к многообразным условиям существования при оседании их на морское дно, при перемещении к поверхности или при изменении источников питания. Благодаря этому у первых многоклеточных организмов постепенно появились рот, кишечник и другие жизненно важные органы.
Еще одна распространенная гипотеза происхождения и эволюции многоклеточных организмов – появление трихоплакса как первого примитивного животного. Этот плоский многоклеточный организм, напоминающий ползущую кляксу, до сих пор считается одним из самых загадочных на планете. Он не обладает ни мускулатурой, ни передним и задним концом, ни осями симметрии, ни какими-либо сложными внутренними органами, но при этом способен размножаться половым путем. Особенности строения и поведения трихоплакса, ползающего по субстрату среди микроводорослей, позволили отнести его к категории одного из самых примитивных многоклеточных животных на нашей планете.
Кто бы ни был предком многоклеточных животных, дальнейший ход эволюции в протерозое привел к появлению так называемых гребневиков. Это планктонные животные с рядами гребных пластинок, образованных сросшимися ресничками. В протерозое они перешли от плавания к ползанию по дну, их тело поэтому сплющилось, выделились головной отдел, двигательный аппарат в виде кожно-мускульного мешка, органы дыхания, сформировались выделительная и кровеносная системы. Линней, создатель первой научной системы органического мира, уделил гребневикам очень небольшое внимание, упомянув в своей «Системе природы» один вид гребневиков. В 1829 году вышла в свет первая в мире большая работа, посвященная медузам. Ее автор, немецкий зоолог Эшшольц (Eschscholtz), описал в ней и несколько видов известных ему гребневиков. Он считал их особым классом медуз, который назвал гребневиками (Ctenophora). Это название сохранилось за ними и в настоящее время» («Жизнь животных», под ред. Н. А. Гладкова, А. В. Михеева).
Более 630 млн лет назад на Земле появились губки, которые развились на морском дне, преимущественно на мелководье, а потом опустились в более глубокие воды. Наружный слой тела губок образован плоскими покровными клетками, в то время как внутренний – жгутиковыми клетками. Одним своим концом губка прирастает к какому-либо субстрату – камням, водорослям, поверхности тела других животных.

Первые многоклеточные организмы жили в придонных слоях древнейших морей и океанов, где внешние условия среды потребовали от них расчленения тела на отдельные части, служившие либо для прикрепления к субстрату, либо для питания. Кормились они, главным образом, органическим веществом (детритом), который покрывал донный ил. Хищников тогда практически не было. Некоторые многоклеточные организмы пропускали через себя переполненные питательным веществом верхние слои морского ила либо поглощали живые бактерии и водоросли, которые в нем обитали.
Плоские и кольчатые черви медленно плавали над самым дном или ползали среди осадков, а трубчатые черви лежали среди донных отложений. В протерозойскую эру в морях и водных бассейнах планеты, вероятно, были широко распространены крупные плоские животные в форме блина, обитавшие на илистом дне, разнообразные медузы, плававшие в толще воды, и примитивные иглокожие. На мелководьях расцветали огромные водоросли – вендотении, которые достигали в длину около одного метра и были похожи на морскую капусту.
Большинство живых существ на нашей планете к концу протерозойской эры уже были представлены многоклеточными формами. Их жизнедеятельность сохранилась в виде отпечатков и слепков на некогда мягком иле. В отложениях того периода можно наблюдать следы ползания, проседания грунта, вырытых норок.
Конец протерозойской эры ознаменовался вспышкой разнообразия многоклеточных организмов и появлением животных, существование которых тогда было тесно связано с морем. Огромное количество остатков многоклеточных животных в слоях возрастом 650-700 млн лет даже послужило причиной выделения в протерозое особого периода, получившего название венд. Он продолжался примерно 110 млн лет и охарактеризовался по сравнению с другими эпохами достижением значительного разнообразия многоклеточных животных.
Возникновение многоклеточное способствовало в дальнейшем увеличению разнообразия живых организмов. Она привела к повышению способности организмов создавать в своем теле запас питательных веществ и реагировать на изменения окружающей среды.
для дальнейшей эволюции биосферы. Живые организмы постепенно начали сами изменять форму и состав земной коры, формировать новую оболочку Земли. Можно сказать, что в протерозое жизнь на планете стала важнейшим геологическим фактором.

Понравилась статья? Поделитесь ей