Контакты

Сумма углов равна 180 градусов если они. Теорема о сумме углов треугольника

Треугольник представляет собой многоугольник, имеющий три стороны (три угла). Чаще всего стороны обозначают маленькими буквами, соответствующими заглавным буквам, которыми обозначают противоположные вершины. В данной статье мы ознакомимся с видами этих геометрических фигур, теоремой, которая определяет, чему равняется сумма углов треугольника.

Виды по величине углов

Различают следующие виды многоугольника с тремя вершинами:

  • остроугольный, у которого все углы острые;
  • прямоугольный, имеющий один прямой угол, при его образующие, называют катетами, а сторона, которая размещена противоположно прямому углу, именуется гипотенузой;
  • тупоугольный, когда один ;
  • равнобедренный, у которого две стороны равные, и называются они боковыми, а третья - основанием треугольника;
  • равносторонний, имеющий все три равные стороны.

Свойства

Выделяют основные свойства, которые характерны для каждого вида треугольника:

  • напротив большей стороны всегда располагается больший угол, и наоборот;
  • напротив равных по величине сторон находятся равные углы, и наоборот;
  • у любого треугольника есть два острых угла;
  • внешний угол больше по сравнению с любым внутренним углом, не смежным с ним;
  • сумма каких-либо двух углов всегда меньше 180 градусов;
  • внешний угол равняется сумме остальных двух углов, которые не межуют с ним.

Теорема о сумме углов треугольника

Теорема утверждает, что если сложить все углы данной геометрической фигуры, которая расположена на евклидовой плоскости, то их сумма будет составлять 180 градусов. Попробуем доказать данную теорему.

Пускай у нас есть произвольный треугольник с вершинами КМН.

Через вершину М проведем КН (еще эту прямую называют прямой Евклида). На ней отметим точку А таким образом, чтоб точки К и А были расположены с разных сторон прямой МН. Мы получаем равные углы АМН и КНМ, которые, как и внутренние, лежат накрест и образовываются секущей МН совместно с прямыми КН и МА, которые являются параллельными. Из этого следует, что сумма углов треугольника, расположенных при вершинах М и Н, равняется размеру угла КМА. Все три угла составляют сумму, которая равна сумме углов КМА и МКН. Поскольку данные углы являются внутренними односторонними относительно параллельных прямых КН и МА при секущей КМ, их сумма составляет 180 градусов. Теорема доказана.

Следствие

Из выше доказанной теоремы вытекает следующее следствие: любой треугольник имеет два острых угла. Чтобы это доказать, допустим, что данная геометрическая фигура имеет всего один острый угол. Также можно предположить, что ни один из углов не является острым. В этом случае должно быть как минимум два угла, величина которых равна или больше 90 градусов. Но тогда сумма углов будет больше, чем 180 градусов. А такого быть не может, поскольку согласно теореме сумма углов треугольника равна 180° - не больше и не меньше. Вот это и нужно было доказать.

Свойство внешних углов

Чему равна сумма углов треугольника, которые являются внешними? Ответ на этот вопрос можно получить, применив один из двух способов. Первый заключается в том, что необходимо найти сумму углов, которые взяты по одному при каждой вершине, то есть трех углов. Второй подразумевает, что нужно найти сумму всех шести углов при вершинах. Для начала разберемся с первым вариантом. Итак, треугольник содержит шесть внешних углов - при каждой вершине по два.

Каждая пара имеет равные между собой углы, поскольку они являются вертикальными:

∟1 = ∟4, ∟2 = ∟5, ∟3 = ∟6.

Кроме этого, известно, что внешний угол у треугольника равняется сумме двух внутренних, которые не межуются с ним. Следовательно,

∟1 = ∟А + ∟С, ∟2 = ∟А + ∟В, ∟3 = ∟В + ∟С.

Из этого получается, что сумма внешних углов, которые взяты по одному возле каждой вершины, будет равна:

∟1 + ∟2 + ∟3 = ∟А + ∟С + ∟А + ∟В + ∟В + ∟С = 2 х (∟А + ∟В + ∟С).

С учетом того, что сумма углов равняется 180 градусам, можно утверждать, что ∟А + ∟В + ∟С = 180°. А это значит, что ∟1 + ∟2 + ∟3 = 2 х 180° = 360°. Если же применяется второй вариант, то сумма шести углов будет, соответственно, большей в два раза. То есть сумма внешних углов треугольника будет составлять:

∟1 + ∟2 + ∟3 + ∟4 + ∟5 + ∟6 = 2 х (∟1 + ∟2 + ∟2) = 720°.

Прямоугольный треугольник

Чему равняется сумма углов прямоугольного треугольника, являющихся острыми? Ответ на этот вопрос, опять же, вытекает из теоремы, которая утверждает, что углы в треугольнике в сумме составляют 180 градусов. А звучит наше утверждение (свойство) так: в прямоугольном треугольнике острые углы в сумме дают 90 градусов. Докажем его правдивость.

Пускай нам дан треугольник КМН, у которого ∟Н = 90°. Необходимо доказать, что ∟К + ∟М = 90°.

Итак, согласно теореме о сумме углов ∟К + ∟М + ∟Н = 180°. В нашем условии сказано, что ∟Н = 90°. Вот и получается, ∟К + ∟М + 90° = 180°. То есть ∟К + ∟М = 180° - 90° = 90°. Именно это нам и следовало доказать.

В дополнение к вышеописанным свойствам прямоугольного треугольника, можно добавить и такие:

  • углы, которые лежат против катетов, являются острыми;
  • гипотенуза треугольна больше любого из катетов;
  • сумма катетов больше гипотенузы;
  • катет треугольника, который лежит напротив угла 30 градусов, в два раза меньше гипотенузы, то есть равняется ее половине.

Как еще одно свойство данной геометрической фигуры можно выделить теорему Пифагора. Она утверждает, что в треугольнике с углом 90 градусов (прямоугольном) сумма квадратов катетов равняется квадрату гипотенузы.

Сумма углов равнобедренного треугольника

Ранее мы говорили, что равнобедренным называют многоугольник с тремя вершинами, содержащий две равные стороны. Известно такое свойство данной геометрической фигуры: углы при его основании равны. Докажем это.

Возьмем треугольник КМН, который является равнобедренным, КН - его основание.

От нас требуется доказать, что ∟К = ∟Н. Итак, допустим, что МА - это биссектриса нашего треугольника КМН. Треугольник МКА с учетом первого признака равенства равен треугольнику МНА. А именно по условию дано, что КМ = НМ, МА является общей стороной, ∟1 = ∟2, поскольку МА - это биссектриса. Используя факт равенства этих двух треугольников, можно утверждать, что ∟К = ∟Н. Значит, теорема доказана.

Но нас интересует, какова сумма углов треугольника (равнобедренного). Поскольку в этом отношении у него нет своих особенностей, будем отталкиваться от теоремы, рассмотренной ранее. То есть мы можем утверждать, что ∟К + ∟М + ∟Н = 180°, или 2 х ∟К + ∟М = 180° (поскольку ∟К = ∟Н). Данное свойство доказывать не будем, поскольку сама теорема о сумме углов треугольника была доказана ранее.

Кроме рассмотренных свойств об углах треугольника, имеют место и такие немаловажные утверждения:

  • в которая была опущена на основание, является одновременно медианой, биссектрисой угла, который находится между равными сторонами, а также его основания;
  • медианы (биссектрисы, высоты), которые проведены к боковым сторонам такой геометрической фигуры, равны.

Равносторонний треугольник

Его еще называют правильным, это тот треугольник, у которого равны все стороны. А поэтому равны также и углы. Каждый из них составляет 60 градусов. Докажем это свойство.

Допустим, что у нас есть треугольник КМН. Нам известно, что КМ = НМ = КН. А это значит, что согласно свойству углов, расположенных при основании в равнобедренном треугольнике, ∟К = ∟М = ∟Н. Поскольку согласно теореме сумма углов треугольника ∟К + ∟М + ∟Н = 180°, то 3 х ∟К = 180° или ∟К = 60°, ∟М = 60°, ∟Н = 60°. Таким образом, утверждение доказано.

Как видно из выше приведенного доказательства на основании теоремы, сумма углов как и сумма углов любого другого треугольника, составляет 180 градусов. Снова доказывать эту теорему нет необходимости.

Существуют еще такие свойства, характерные для равностороннего треугольника:

  • медиана, биссектриса, высота в такой геометрической фигуре совпадают, а их длина вычисляется как (а х √3) : 2;
  • если описать вокруг данного многоугольника окружность, то ее радиус будет равен (а х √3) : 3;
  • если вписать в равносторонний треугольник окружность, то ее радиус будет составлять (а х √3) : 6;
  • площадь этой геометрической фигуры вычисляется по формуле: (а2 х √3) : 4.

Тупоугольный треугольник

Согласно определению один из его углов находится в промежутке от 90 до 180 градусов. Но учитывая то, что два остальных угла данной геометрической фигуры острые, можно сделать вывод, что они не превышают 90 градусов. Следовательно, теорема о сумме углов треугольника работает при расчете суммы углов в тупоугольном треугольнике. Получается, мы смело можем утверждать, опираясь на вышеупомянутую теорему, что сумма углов тупоугольного треугольника равна 180 градусам. Опять-таки, данная теорема не нуждается в повторном доказательстве.

Доказательство:

  • Дан треугольник АВС.
  • Через вершину B проведем прямую DK параллельно основанию AC.
  • \angle CBK= \angle C как внутренние накрест лежащие при параллельных DK и AC, и секущей BC.
  • \angle DBA = \angle A внутренние накрест лежащие при DK \parallel AC и секущей AB. Угол DBK развернутый и равен
  • \angle DBK = \angle DBA + \angle B + \angle CBK
  • Так как развернутый угол равен 180 ^\circ , а \angle CBK = \angle C и \angle DBA = \angle A , то получим 180 ^\circ = \angle A + \angle B + \angle C.

Теорема доказана

Следствия из теоремы о сумме углов треугольника:

  1. Сумма острых углов прямоугольного треугольника равна 90° .
  2. В равнобедренном прямоугольном треугольнике каждый острый угол равен 45° .
  3. В равностороннем треугольнике каждый угол равен 60° .
  4. В любом треугольнике либо все углы острые, либо два угла острые, а третий - тупой или прямой.
  5. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Теорема о внешнем угле треугольника

Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом

Доказательство:

  • Дан треугольник АВС, где ВСD - внешний угол.
  • \angle BAC + \angle ABC +\angle BCA = 180^0
  • Из равенств угол \angle BCD + \angle BCA = 180^0
  • Получаем \angle BCD = \angle BAC+\angle ABC.

Предварительные сведения

Вначале рассмотрим непосредственно понятие треугольника.

Определение 1

Треугольником будем называть геометрическую фигуру, которая составлена из трех точек, соединенных между собой отрезками (рис. 1).

Определение 2

Точки в рамках определения 1 будем называть вершинами треугольника.

Определение 3

Отрезки в рамках определения 1 будем называть сторонами треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.

Теорема о сумме углов в треугольнике

Введем и докажем одну из основных теорем, связанную с треугольников, а именно теорему о сумме углов в треугольнике.

Теорема 1

Сумма углов в любом произвольном треугольнике равняется $180^\circ$.

Доказательство.

Рассмотрим треугольник $EGF$. Докажем, что сумма углов в этом треугольнике равняется $180^\circ$. Сделаем дополнительное построение: проведем прямую $XY||EG$ (рис. 2)

Так как прямые $XY$ и $EG$ параллельны, то $∠E=∠XFE$ как накрест лежащие при секущей $FE$, а $∠G=∠YFG$ как накрест лежащие при секущей $FG$

Угол $XFY$ будет развернутым, следовательно, равняется $180^\circ$.

$∠XFY=∠XFE+∠F+∠YFG=180^\circ$

Следовательно

$∠E+∠F+∠G=180^\circ$

Теорема доказана.

Теорема о внешнем угле треугольника

Еще одной теоремой о сумме углов для треугольника можно считать теорему о внешнем угле. Для начала введем это понятие.

Определение 4

Внешним углом треугольника будем называть такой угол, который будет смежным с каким-либо углом треугольника (рис. 3).

Рассмотрим теперь непосредственно теорему.

Теорема 2

Внешний угол треугольника равняется сумме двух углов треугольника, которые не являются смежным для него.

Доказательство.

Рассмотрим произвольный треугольник $EFG$. Пусть он имеет внешний угол треугольника $FGQ$ (рис. 3).

По теореме 1 ,будем иметь, что $∠E+∠F+∠G=180^\circ$, следовательно,

$∠G=180^\circ-(∠E+∠F)$

Так как угол $FGQ$ внешний, то он смежен с углом $∠G$, тогда

$∠FGQ=180^\circ-∠G=180^\circ-180^\circ+(∠E+∠F)=∠E+∠F$

Теорема доказана.

Пример задач

Пример 1

Найти все углы треугольника, если он является равносторонним.

Так как у равностороннего треугольника все стороны равны, то будем иметь, что и все углы в нем также равны между собой. Обозначим их градусные меры через $α$.

Тогда, по теореме 1 будем получать

$α+α+α=180^\circ$

Ответ: все углы равняются по $60^\circ$.

Пример 2

Найти все углы равнобедренного треугольника, если один его угол равняется $100^\circ$.

Введем следующие обозначения углов в равнобедренном треугольнике:

Так как нам не дано в условии, какой именно угол равняется $100^\circ$, то возможны два случая:

    Угол, равный $100^\circ$ - угол при основании треугольника.

    По теореме об углах при основании равнобедренного треугольника получим

    $∠2=∠3=100^\circ$

    Но тогда только их сумма будет больше, чем $180^\circ$, что противоречит условию теоремы 1. Значит, этот случай не имеет места.

    Угол, равный $100^\circ$ - угол между равными сторонами, то есть

    Вдогонку ко вчерашнему:

    Играем с мозаикой под сказку по геометрии:

    Жили-были треугольники. Такие похожие, что просто копия друг друга.
    Стали они как-то рядышком на прямую линию. А так как были они все одного роста -
    то и верхушки их были на одном уровне, под линеечку:

    Треугольники любили кувыркаться и стоять на голове. Взобрались в верхний ряд и стали на уголок, как акробаты.
    А мы уже знаем - когда они стоят верхушками ровно в линию,
    то и подошвы у них тоже по линеечке - потому что если кто одного роста, то он и верх ногами одного роста!

    Во всем они были одинаковые - и высота одинаковая, и подошвы один в один,
    и горки по сторонам - одна круче, другая более пологая - по длине одинаковые
    и наклон у них одинаковый. Ну просто близнецы! (только в разных одежках, у каждого свой кусочек пазла) .

    - Где у треугольников одинаковые стороны? А где уголки одинаковые?

    Постояли треугольники на голове, постояли, да и решили соскользнуть и улечься в нижнем ряду.
    Заскользили и съехали как с горки; а горки-то у них одинаковые!
    Вот и поместились аккурат между нижними треугольниками, без зазоров и никто никого не потеснил.

    Огляделись треугольники и заметили интересную особенность.
    Везде, где их углы вместе сошлись - непременно встретились все три угла:
    самый большой - "угол-голова", самый острый угол и третий, средний по величине угол.
    Они даже ленточки цветные повязали, что б сразу было заметно, где какой.

    И получилось, что три угла треугольника, если их совместить -
    составляют один большой угол, "угол нараспашку" - как обложка раскрытой книги,

    ______________________о ___________________

    он так и называется: развернутый угол.

    У любого треугольника - будто паспорт: три угла вместе равны развернутому углу.
    Постучится к вам кто-нибудь: - тук-тук, я треугольник, пустите меня переночевать!
    А вы ему - Предъяви-ка сумму углов в развернутом виде!
    И сразу понятно - настоящий ли это треугольник или самозванец.
    Не прошел проверку - Разворачивайся на сто восемьдесят градусов и ступай восвояси!

    Когда говорят "повернуть на 180° - это значит развернуться задом наперед и
    идти в обратном направлении.

    То же самое в более привычных выражениях, без "жили были":

    Совершим параллельный перенос треугольника АВС вдоль оси ОХ
    на вектор АВ равный длине основания АВ.
    Прямая, DF проходящая через вершины С и С 1 треугольников
    параллельна оси ОХ, в силу того, что перпендикулярные оси ОХ
    отрезки h и h 1 (высоты равных треугольников) равны.
    Таким образом основание треугольника А 2 В 2 С 2 параллельно основанию АВ
    и равно ему по длине (т.к. вершина С 1 смещена относительно С на величину АВ).
    Треугольники А 2 В 2 С 2 и АВС равны по трем сторонам.
    А стало быть углы ∠А 1 ∠В ∠С 2 , образующие развернутый угол, равны углам треугольника АВС.
    => Сумма углов треугольника равна 180°

    С движениями - "трансляциями" так называемыми доказательство короче и наглядней,
    на кусочках мозаики даже малышу может быть понятно.

    Зато традиционное школьное:

    опирающееся на равенство внутренних накрест-лежащих углов, отсекаемых на параллельных прямых

    ценно тем, что дает представление о том - почему это так,
    почему сумма углов треугольника равна развернутому углу?

    Потому что иначе параллельные прямые не обладали бы привычными нашему миру свойствами.

    Теоремы работают в обе стороны. Из аксиомы о параллельных прямых следует
    равенство накрест лежащих и вертикальных углов, а из них - сумма углов треугольника.

    Но верно и обратное: пока углы треугольника составляют 180° - существуют параллельные прямые
    (такие, что через точку не лежащую на прямой можно провести единственную прямую || данной).
    Если однажды в мире появится треугольник, у которого сумма углов не равна развернутому углу -
    то параллельные перестанут быть параллельны, весь мир искривится и перекособочится.

    Если полосы с орнаментом из треугольников расположить друг над другом -
    можно покрыть все поле повторяющимся узором, будто пол плиткой:


    можно обводить на такой сетке разные фигуры - шестиугольники, ромбы,
    звездные многоугольники и получать самые разные паркеты


    Замощение плоскости паркетами - не только занятная игра, но и актуальная математическая задача:

    ________________________________________ _______________________-------__________ ________________________________________ ______________
    /\__||_/\__||_/\__||_/\__||_/\__|)0(|_/\__||_/\__||_/\__||_/\__||_/\=/\__||_/ \__||_/\__||_/\__||_/\__|)0(|_/\__||_/\__||_/\__||_/\__||_/\

    Поскольку каждый четырехугольник - прямоугольник, квадрат, ромб и проч.,
    может быть составлен из двух треугольников,
    соответственно сумма углов четырехугольника: 180° + 180°= 360°

    Одинаковые равнобедренные треугольники складываются в квадраты разными способами.
    Маленький квадратик из 2-х частей. Средний из 4-х. И самый большой из 8-ми.
    Сколько на чертеже фигур, состоящих из 6-ти треугольников?

Понравилась статья? Поделитесь ей