Контакты

Закон ома для полной цепи. Изучения применения закона ома для цепей постоянного тока Изучение закона ома полной цепи

Урок изучения нового материала для 10 класса с исследовательским заданием по теме "Закон Ома для полной цепи". При объяснении новой темы учащиеся участвуют в обсуждении вопросов, делают записи в тетрадях в виде опорного конспекта, самостоятельно экспериментируют лабораторные задания и заполняют таблицу.

Скачать:


Предварительный просмотр:

Исследовательские задания на уроке физики по теме

"Закон Ома для полной цепи"

Класс: 10
Продолжительность: 45 мин
Учитель: Бойтунова А.В.

Оборудование: компьютер, презентация к уроку, таблицы, рабочие листы.

Приборы: Источники питания, реостаты, амперметры, вольтметры, ключи,

соединительные провода.

Тип урока : урок изучения нового материала.

Формы работы учащихся : при объяснении новой темы учащиеся участвуют в обсуждении вопросов, делают записи в тетради в виде опорного конспекта, самостоятельно заполняют таблицу и закрепляют полученные знания.


План урока

  1. Повторение изученного материала (5 мин);
  2. Актуализация знаний (2 мин);
  3. Изучение нового материала (25 мин);
  4. Закрепление нового материала (5 мин);
  5. Подведение итогов (2 мин);
  6. Рефлексия (2 мин).
  7. Домашнее задание, комментарии (2 мин).

Девиз: “Чтобы познать, нужно научиться наблюдать!”

Ход урока:
1. Организационный момент: (1-2мин).
Вступление: Добрый день. Сегодня тема нашего урока: Сторонние силы. ЭДС.
Закон Ома для полной цепи. В качестве эпиграфа к уроку я взяла слова Георга Ома:

« Да, электричество - мой задушевный друг,
Согреет, развлечет, прибавит света
».

Цель урока: Ввести понятие электродвижущей силы, разъяснить содержание закона Ома для полной замкнутой цепи.

2. Повторение материала: (5 мин) Для выявления лидеров и повторения пройденного материала дети решают тест. Вопросы к тесту показаны на экране через проектор. Выйдите вперёд, кто ответил больше всех: они будут лидерами групп.

А сейчас мы разделимся на 3 группы. Лидеры выберите себе команду, с которой вы будете вести исследовательскую работу.

3. Работа в группах: (15 мин) (группы проводят эксперименты и сообщают классу о его результатах), но перед тем как выполнить исследования учитель напоминает о правиле техники безопасности.

1. Опыт №1. «Исследование Закона Ома для участка цепи»

Ход работы:

Собрать базовую цепь. Двигая ползунок реостата определить значения силы тока и напряжения в цепи, показания занести в таблицу (5 значений). По данным таблицы построить график и сделать вывод.

I , A

U , B

2. Опыт №2. «Исследование Закона Ома для полной цепи»

Оборудование: Источник питания, реостат, амперметр, вольтметр, ключ, соединительные провода.

Ход работы:

Соберите электрическую цепь.

Проверьте надежность электрических контактов, правильность подключения амперметра и вольтметра.

Проделайте работу цепи при разомкнутом и замкнутом ключе. Внимательно посмотрите показание вольтметра.

Снимите показания амперметра и вольтметра при замкнутом ключе.

Запишите результаты измерений, постройте график и сделайте вывод.

4. Работа с учебниками: (15 мин) учащиеся самостоятельно заполняют таблицу, используя литературу и справочники по физике.

Дополнение учителя: ЭДС равна сумме падений напряжений на внешнем и внутреннем участке цепи. Напряжение на отдельных участках цепи можно найти по закону Ома для участка цепи.

5. Заключение: (5 мин) Можно подвести итог. Вы сами исследуя доказали существование сторонних сил и подтвердили, что они совершают работу. Доказали, что источник обладает сопротивлением, а также он характеризуется постоянной величиной называемой ЭДС. Теперь вы можете создавать простейшие гальванические элементы. Группы еще раз повторяют основные выводы и формулируют закон Ома.

6. Рефлексия учащихся: (2 мин).

7. Запишем домашнее задание: (2 мин) § 109, 110, Создайте гальванический элемент, используя в качестве кислотной среды яблоко, лимон, солёный помидор или огурец. И сравните ЭДС, создаваемое каждым источником.

Комментарий: Урок сопровождается показом презентации.

Приложение

Группа №_______________

Лидер ______________________________________________

Закон Ома для участка цепи

Закон Ома для полной цепи

1. Опыт № 1 Закон Ома для участка цепи.

1. Опыт № 2 Закон Ома для полной цепи.

2. Какие величины связывает Закон Ома для участка цепи?

2. Какие величины связывает Закон Ома для полной цепи?

3. Напишите единицы измерения этих величин.

3. Напишите единицы измерения этих величин.

4. Формула Закон Ома для участка цепи:

4. Формула Закона Ома для полной цепи:

5.

5. Как формулируется закон Ома?

5. Вольтамперная характеристика

5. Вольтамперная характеристика

6. Сегодня на уроке я

  1. Узнал (а)…
  2. Научился (лась)…
  3. Теперь я могу…

6. Сегодня на уроке я

  1. Узнал (а)…
  2. Научился (лась)…
  3. Теперь я могу…
  4. Знания, полученные сегодня мне пригодятся…….
  5. Как ты думаешь, справишься ли ты с домашним заданием?


Лабораторная работа.

Изучение закона Ома для полной цепи.

Цель работы:

Измерить ЭДС и внутреннее сопротивление источника тока.

Оборудование:

Источник питания (выпрямитель). Реостат (30 Ом, 2 А). Амперметр. Вольтметр. Ключ. Соединительные провода.

Экспериментальная установка показана на фото 1.

К источнику тока 1 подключаем реостат 2, амперметр 3, ключ 4.

Непосредственно к источнику тока подключаем вольтметр 5.

Электрическая схема данной цепи приведена на рисунке 1.

Согласно закону Ома, сила тока в замкнутой цепи с одним источником тока определяется выражением

У нас IR=U – падение напряжения на внешнем участке цепи, которое измеряется вольтметром при включённой цепи.

Формулу (1) запишем так

Можно найти ЭДС и внутреннее сопротивление источника тока используя значения тока и напряжения двух опытов (например 2 и 5).

Запишем формулу (2) для двух опытов.

Из уравнения (4) находим

И для любого опыта по формуле (2) находим Э. Д.С.

Если вместо реостата взять резистор сопротивлением порядка 4 Ом, то внутреннее сопротивление источника можно найти используя формулу (1)

Порядок выполнения работы.

Собрать электрическую цепь. Измерить вольтметром ЭДС источника тока при разомкнутом ключе К. Замкните ключ К. Устанавливая с помощью реостата силу тока в цепи: 0,3; 0,6; 0,9; 1,2; 1,5; 1,8 А. Запишите показания вольтметра для каждого значения силы тока. Рассчитайте внутреннее сопротивление источника тока по формуле (3).

Найдите среднее значение rср.
Значения ε, I, U, r, rср. запишите в таблицу.


Класс точности школьных приборов 4%, (т. е. к=0,04.) Таким образом абсолютная погрешность при измерении напряжения и ЭДС равна

погрешность при измерении силы тока

Запишите окончательный результат измерения ε

Найдите относительную погрешность измерения внутреннего сопротивления источника тока,

Найдите абсолютную погрешность измерения внутреннего сопротивления

Запишите окончательный результат измерения r

rср ±Δr=…..

Найдите внутреннее сопротивления источника по формуле (5) Заменив в цепи реостат на резистор, и используя формулу (6), найдите внутреннее сопротивление источника тока.

Требования к отчету:

Название и цель работы. Нарисовать схему электрической цепи. Написать расчетные формулы и основные расчеты. Заполнить таблицу. Нарисовать график U=f(I) (беря во внимание, что при I=0 U=ε)

Ответы на вопросы:

1. Сформулировать закон Ома для полной цепи.

2. Что такое ЭДС?

3. От чего зависит КПД цепи?

4. Как определить ток короткого замыкания?

5. В каком случае КПЛ цепи имеет максимальное значение?

6. В каком случае мощность на внешней нагрузке максимальна?

7. В проводнике сопротивлением 2 Ом, подключенном к элементу с ЭДС 2,2 B, идет ток силой 1 A. Найдите ток короткого замыкания элемента.

8. Внутреннее сопротивление источника 2 Ом. Сила тока в цепи 0,5 А. Напряжение на внешнем участке цепи 50 В. Определите ток короткого замыкания.

Закон Ома для полной цепи – эмпирический (полученный из эксперимента) закон, который устанавливает связь между силой тока, электродвижущей силой (ЭДС) и внешним и внутренним сопротивлением в цепи.

При проведении реальных исследований электрических характеристик цепей с постоянным током необходимо учитывать сопротивление самого источника тока. Таким образом в физике осуществляется переход от идеального источника тока к реальному источнику тока, у которого есть свое сопротивление (см. рис. 1).

Рис. 1. Изображение идеального и реального источников тока

Рассмотрение источника тока с собственным сопротивлением обязывает использовать закон Ома для полной цепи.

Сформулируем закона Ома для полной цепи так (см. рис. 2): сила тока в полной цепи прямо пропорциональна ЭДС и обратно пропорциональна полному сопротивлению цепи, где под полным сопротивлением понимается сумма внешних и внутренних сопротивлений.

Рис. 2. Схема закона Ома для полной цепи.


  • R – внешнее сопротивление [Ом];
  • r – сопротивление источника ЭДС (внутреннее) [Ом];
  • I – сила тока [А];
  • ε– ЭДС источника тока [В].

Рассмотрим некоторые задачи на данную тему. Задачи на закон Ома для полной цепи, как правило, дают ученикам 10 класса, чтобы они могли лучше усвоить указанную тему.

I. Определите силу тока в цепи с лампочкой, сопротивлением 2,4 Ом и источником тока, ЭДС которого равно 10 В, а внутреннее сопротивление 0,1 Ом.

По определению закона Ома для полной цепи, сила тока равна:

II. Определить внутреннее сопротивление источника тока с ЭДС 52 В. Если известно, что при подключении этого источника тока к цепи с сопротивлением 10 Ом амперметр показывает значение 5 А.

Запишем закон Ома для полной цепи и выразим из него внутреннее сопротивление:

III. Однажды школьник спросил у учителя по физике: «Почему батарейка садится?» Как грамотно ответить на данный вопрос?

Мы уже знаем, что реальный источник обладает собственным сопротивлением, которое обусловлено либо сопротивлением растворов электролитов для гальванических элементов и аккумуляторов, либо сопротивлением проводников для генераторов. Согласно закону Ома для полной цепи:

следовательно, ток в цепи может уменьшаться либо из-за уменьшения ЭДС, либо из-за повышения внутреннего сопротивления. Значение ЭДС у аккумулятора почти постоянный. Следовательно, ток в цепи понижается за счет повышения внутреннего сопротивления. Итак, «батарейка» садится, так как её внутреннее сопротивление увеличивается.

При проектировании и ремонте схем различного назначения обязательно учитывается закон Ома для полной цепи. Поэтому тем, кто собирается этим заниматься, для лучшего понимания процессов этот закон надо знать. Законы Ома разделяют на две категории:

  • для отдельного участка электрической цепи;
  • для полной замкнутой цепи.

В обоих случаях учитывается внутреннее сопротивление в структуре источника питания. В вычислительных расчетах используют закон Ома для замкнутой цепи и другие определения.

Простейшая схема с источником ЭДС

Чтобы понять закон Ома для полной цепи, для наглядности изучения рассматривается самая простая схема с минимальным количеством элементов, ЭДС и активной резистивной нагрузки. Можно прибавить в комплект соединительные провода. Для питания идеально подходит автомобильный аккумулятор 12В, он рассматривается как источник ЭДС со своим сопротивлением в элементах конструкции.

Роль нагрузки играет обычная лампа накаливания с вольфрамовой спиралью, которая имеет сопротивление в несколько десятков Ом. Данная нагрузка преобразует электрическую энергию в тепловую. Всего несколько процентов расходуются на излучение потока света. При расчете таких схем применяют закон Ома для замкнутой цепи.

Принцип пропорциональности

Экспериментальными исследованиями в процессе измерений величин при разных значениях параметров полной цепи:

  • Силы тока – I А;
  • Суммы сопротивлений батареи и нагрузки – R+r измеряют в омах;
  • ЭДС – источник тока, обозначают как Е. измеряется в вольтах

было замечено, что сила тока имеет прямо пропорциональную зависимость относительно ЭДС и обратную пропорциональную зависимость относительно суммы сопротивлений, которые замыкаются последовательно в контуре цепи. Алгебраически это сформулируем следующим образом:

Рассматриваемый пример схемы с замкнутым контуром цепи – с одним источником питания и одним внешним элементом сопротивления нагрузки в виде лампы со спиралью накаливания. При расчете сложных схем с несколькими контурами и множеством элементов нагрузки применяют закон Ома для всей цепи и другие правила. В частности надо знать законы Киргофа, понимать, что такое двухполюсники, четырехполюсники, отводящие узлы и отдельные ветви. Это требует детального рассмотрения в отдельной статье, раньше этот курс ТЭРЦ (теория электро- радиотехнических цепей) в институтах учили не менее двух лет. Поэтому ограничиваемся простым определением только для полной электрической цепи.

Особенности сопротивлений в источниках питания

Важно! Если сопротивление спирали на лампе мы видим на схеме и в реальной конструкции, то внутреннего сопротивления в конструкции гальванической батарейки, или аккумулятора, не видно. В реальной жизни, даже если разобрать аккумулятор, найти сопротивление невозможно, оно не существует как отдельная деталь, иногда его отображают на схемах.

Внутреннее сопротивление создается на молекулярном уровне. Токопроводящие материалы аккумулятора или другого источника питания генератора с выпрямителем тока не обладают 100% проводимостью. Всегда присутствуют элементы с частицами диэлектрика или металлов другой проводимости, это создает потери тока и напряжения в батарее. На аккумуляторах и батарейках нагляднее всего отображается влияние сопротивления элементов конструкции на величину напряжения и тока на выходе. Способность источника выдавать максимальный ток определяет чистота состава токопроводящих элементов и электролита. Чем чище материалы, тем меньше значение r, источник ЭДС выдает больший ток. И, наоборот, при наличии примесей ток меньше, r увеличивается.

В нашем примере аккумулятор имеет ЭДС 12В, к нему подключается лампочка, способная потреблять мощность 21 Вт, в этом режиме спираль лампы раскаляется до максимально допустимого накала. Формулировка проходящего через нее тока записывается как:

I = P\U = 21 Вт / 12В = 1,75 А.

При этом спираль лампы горит в половину накала, выясним причину этого явления. Для расчетов сопротивления общей нагрузки (R + r ) применяют законы Ома для отдельных участков цепей и принципы пропорциональности:

(R + r) = 12\ 1,75 = 6,85 Ом.

Возникает вопрос, как выделить из суммы сопротивлений величину r. Допускается вариант – измерить мультиметром сопротивление спирали лампы, отнять его от общего и получить значение r – ЭДС. Этот способ будет не точен – при нагревании спирали сопротивление значительно изменяет свою величину. Очевидно, что лампа не потребляет заявленной в ее характеристиках мощности. Ясно, что напряжение и ток для накаливания спирали малы. Для выяснения причины измерим падение напряжения на аккумуляторе при подключенной нагрузке, к примеру, оно будет 8 Вольт. Предположим, что сопротивление спирали рассчитывается с использованием принципов пропорциональности:

U/ I = 12В/1,75А = 6,85 Ом.

При падении напряжения сопротивление лампы остается постоянным, в этом случае:

  • I = U/R = 8В/6,85 Ом = 1,16 А при требуемом 1.75А;
  • Потери по току = (1,75 -1.16) = 0,59А;
  • По напряжению = 12В – 8В = 4В.

Потребляемая мощность будет Р = UxI = 8В х 1.16А = 9,28 Вт вместо положенных 21 Вт. Выясняем, куда уходит энергия. За пределы замкнутого контура не может, остаются только провода и конструкция источника ЭДС.

Сопротивление ЭДС – r можно вычислить, используя потерянные величины напряжения и тока:

r = 4В/0.59А = 6,7 Ом.

Получается внутреннее сопротивление источника питания «сжирает» половину выделяемой энергии на себя, и это, конечно, не нормально.

Такое бывает в старых отработавших свой срок или бракованных аккумуляторах. Сейчас производители стараются следить за качеством и чистотой применяемых токоведущих материалов, чтобы снизить потери. Для того чтобы в нагрузку отдавалась максимальная мощность, технологии изготовления источников ЭДС контролируют, чтобы величина не превышала 0,25 Ом.

Зная закон Ома для замкнутой цепи, используя постулаты пропорциональности, можно легко вычислить необходимые параметры для электрических цепей для определения неисправных элементов или проектирования новых схем различного назначения.

Видео

Лабораторная работа №10. «Изучение закона Ома для полной цепи – 3 способ». Цель работы: изучить закон Ома для полной цепи. Задачи работы:  определение ЭДС и внутреннего сопротивления источника постоянного тока по его вольтамперной характеристике;  исследование графической зависимости мощности, выделяющейся во внешней цепи от величины силы электрического тока P  f I  . Оборудование: источник постоянного тока, амперметр, вольтметр, соединительные провода, ключ, реостат. Теория и метод выполнения работы: Закон I  Rr Ома для полной цепи I  Rr . Преобразуем    I  R  r   I  R  I  r  U  I  r    U  I  r  U    I  r . выражение Следовательно, зависимость напряжения на выходе источника постоянного тока от величины силы тока (вольтамперная характеристика) имеет вид (см. рис. 1): рис. 1 Анализ вольт-амперной характеристики источника постоянного тока: 1) для т.C: I=0, тогда U    0  r   2) для т.D: U=0, тогда 0    I  r    I  r  I  3) tg  U   r I I к.з   I к.з r Выражение для мощности, выделяющейся во внешней электрической цепи имеет вид P  I  U  I    I  r   I    I 2  r . Поэтому графическая зависимость P  f I  представляет собой параболу, ветви которой направлены вниз (см. рис. 2). рис. 2 Анализ графической зависимости P  f I  (см. рис. 3): рис. 3 1) для т.B: P=0, тогда 0  I   I 2  r  0    I  r  I   r  I к. з. , т.е. абсцисса т.B соответствует току короткого замыкания; 2) т.к. парабола является симметричной, то абсцисса т.А составляет половину тока короткого замыкания I  3) т.к. в т.А I  I к. з.   , а ордината – соответствует максимальному значению мощности; 2 2r  Rr и I  2r , то после преобразований получаем R=r – условие, при котором мощность выделяющаяся во внешней цепи с источником постоянного тока принимает максимальное значение; 2     r  4) максимальное значение мощности P  I 2  R   .  4r 2r 2 Ход работы: 1. Подключить вольтметр к клеммам источника постоянного тока (см. рис. 4). Напряжение, показанное вольтметром принять за величину ЭДС источника постоянного тока и считать как эталонное для данной лабораторной работы. Результат записать в виде: (U±U) В. Абсолютную погрешность принять равной цене деления вольтметра. рис. 4 2. Собрать экспериментальную установку по схеме, приведённой на рисунке 5: рис. 5 3. Провести серию из 5-10 экспериментов, при плавном перемещении ползунка реостата, результаты измерений заносить в таблицу: Сила тока Напряжение I U А В 4. По полученным экспериментальным данным построить вольт-амперную характеристику источника постоянного тока. 5. Определить возможное значение ЭДС источника постоянного тока и тока короткого замыкания. 6. Применить методику графической обработки экспериментальных данных и вычислений для расчёта внутреннего сопротивления источника постоянного тока. 7. Результаты вычислений представить в виде:  ЭДС источника постоянного тока: (ср±ср) В;  внутреннее сопротивление источника постоянного тока: r=(rср±rср) Ом. 8. Построить графическую зависимость U  f I  в Microsoft Excel, используя мастер диаграмм с добавлением линии тренда и указанием уравнения прямой. По основным параметрам уравнения определить возможное значение ЭДС источника постоянного тока, тока короткого замыкания и внутреннее сопротивление. 9. На числовых осях указать интервал значений ЭДС, внутреннего сопротивления источника постоянного тока и тока короткого замыкания, полученных различными методами определения. 10. Исследовать мощность, выделяющуюся во внешней цепи от величины силы электрического тока. Для этого заполнить таблицу и построить графическую зависимость P  f I  : Сила тока Мощность I P А Вт 11. По построенному графику определить максимальное значение мощности, ток короткого замыкания, внутреннее сопротивление источника тока и ЭДС. 12. Возможен вариант построения графической зависимости P  f I  в Microsoft Excel, используя мастер диаграмм с добавлением полиномиальной линии тренда со степенью 2, пересечением кривой с осью OY (P) в начале координат и указанием уравнения на диаграмме. По основным параметрам уравнения определить максимальное значение мощности, ток короткого замыкания, внутреннее сопротивление источника тока и ЭДС. 13. Сформулировать общий вывод по работе.

Понравилась статья? Поделитесь ей